2 research outputs found

    Capped norm linear discriminant analysis and its applications

    Full text link
    Classical linear discriminant analysis (LDA) is based on squared Frobenious norm and hence is sensitive to outliers and noise. To improve the robustness of LDA, in this paper, we introduce capped l_{2,1}-norm of a matrix, which employs non-squared l_2-norm and "capped" operation, and further propose a novel capped l_{2,1}-norm linear discriminant analysis, called CLDA. Due to the use of capped l_{2,1}-norm, CLDA can effectively remove extreme outliers and suppress the effect of noise data. In fact, CLDA can be also viewed as a weighted LDA. CLDA is solved through a series of generalized eigenvalue problems with theoretical convergency. The experimental results on an artificial data set, some UCI data sets and two image data sets demonstrate the effectiveness of CLDA

    Deep Self-representative Concept Factorization Network for Representation Learning

    Full text link
    In this paper, we investigate the unsupervised deep representation learning issue and technically propose a novel framework called Deep Self-representative Concept Factorization Network (DSCF-Net), for clustering deep features. To improve the representation and clustering abilities, DSCF-Net explicitly considers discovering hidden deep semantic features, enhancing the robustness proper-ties of the deep factorization to noise and preserving the local man-ifold structures of deep features. Specifically, DSCF-Net seamlessly integrates the robust deep concept factorization, deep self-expressive representation and adaptive locality preserving feature learning into a unified framework. To discover hidden deep repre-sentations, DSCF-Net designs a hierarchical factorization architec-ture using multiple layers of linear transformations, where the hierarchical representation is performed by formulating the prob-lem as optimizing the basis concepts in each layer to improve the representation indirectly. DSCF-Net also improves the robustness by subspace recovery for sparse error correction firstly and then performs the deep factorization in the recovered visual subspace. To obtain locality-preserving representations, we also present an adaptive deep self-representative weighting strategy by using the coefficient matrix as the adaptive reconstruction weights to keep the locality of representations. Extensive comparison results with several other related models show that DSCF-Net delivers state-of-the-art performance on several public databases.Comment: Accepted by SDM 202
    corecore