2,066 research outputs found

    Control and Communication Protocols that Enable Smart Building Microgrids

    Full text link
    Recent communication, computation, and technology advances coupled with climate change concerns have transformed the near future prospects of electricity transmission, and, more notably, distribution systems and microgrids. Distributed resources (wind and solar generation, combined heat and power) and flexible loads (storage, computing, EV, HVAC) make it imperative to increase investment and improve operational efficiency. Commercial and residential buildings, being the largest energy consumption group among flexible loads in microgrids, have the largest potential and flexibility to provide demand side management. Recent advances in networked systems and the anticipated breakthroughs of the Internet of Things will enable significant advances in demand response capabilities of intelligent load network of power-consuming devices such as HVAC components, water heaters, and buildings. In this paper, a new operating framework, called packetized direct load control (PDLC), is proposed based on the notion of quantization of energy demand. This control protocol is built on top of two communication protocols that carry either complete or binary information regarding the operation status of the appliances. We discuss the optimal demand side operation for both protocols and analytically derive the performance differences between the protocols. We propose an optimal reservation strategy for traditional and renewable energy for the PDLC in both day-ahead and real time markets. In the end we discuss the fundamental trade-off between achieving controllability and endowing flexibility

    Intelligent assist device

    Get PDF
    In an Intelligent Assist Device (IAD), the human operator is assisted by the power of the servo drives as well as intelligence from this device. Because of the power actuation, the ergonomic injury of the operator using the device can be reduced. A force transducer provides a convenient way for the operator to generate control command by a simple push to move intuition. Therefore, there is minimum required training for using an IAD. Collision of payload with obstacles has always been a major problem in using a lift assist device. Collision might cause damage to the work piece, lift device and sometimes result in operator injury. All these occurrences will significantly increase the total production cost. In this work, a modified collision-avoidance scheme has been proposed, and it has been proven stable both analytically and experimentally. An artificial attractive well is also explored in this research to guide an operator to approach a target along a preferred path. Stability proof is provided and experimental results are given
    • …
    corecore