177 research outputs found

    Data-driven hallucination of different times of day from a single outdoor photo

    Get PDF
    We introduce "time hallucination": synthesizing a plausible image at a different time of day from an input image. This challenging task often requires dramatically altering the color appearance of the picture. In this paper, we introduce the first data-driven approach to automatically creating a plausible-looking photo that appears as though it were taken at a different time of day. The time of day is specified by a semantic time label, such as "night". Our approach relies on a database of time-lapse videos of various scenes. These videos provide rich information about the variations in color appearance of a scene throughout the day. Our method transfers the color appearance from videos with a similar scene as the input photo. We propose a locally affine model learned from the video for the transfer, allowing our model to synthesize new color data while retaining image details. We show that this model can hallucinate a wide range of different times of day. The model generates a large sparse linear system, which can be solved by off-the-shelf solvers. We validate our methods by synthesizing transforming photos of various outdoor scenes to four times of interest: daytime, the golden hour, the blue hour, and nighttime.National Science Foundation (U.S.) (NSF No.0964004)National Science Foundation (U.S.) (NSF CGV-1111415

    Faithful completion of images of scenic landmarks using internet images

    Get PDF
    Abstract—Previous works on image completion typically aim to produce visually plausible results rather than factually correct ones. In this paper, we propose an approach to faithfully complete the missing regions of an image. We assume that the input image is taken at a well-known landmark, so similar images taken at the same location can be easily found on the Internet. We first download thousands of images from the Internet using a text label provided by the user. Next, we apply two-step filtering to reduce them to a small set of candidate images for use as source images for completion. For each candidate image, a co-matching algorithm is used to find correspondences of both points and lines between the candidate image and the input image. These are used to find an optimal warp relating the two images. A completion result is obtained by blending the warped candidate image into the missing region of the input image. The completion results are ranked according to combination score, which considers both warping and blending energy, and the highest ranked ones are shown to the user. Experiments and results demonstrate that our method can faithfully complete images
    • …
    corecore