3,450 research outputs found

    Bit-interleaved coded modulation in the wideband regime

    Full text link
    The wideband regime of bit-interleaved coded modulation (BICM) in Gaussian channels is studied. The Taylor expansion of the coded modulation capacity for generic signal constellations at low signal-to-noise ratio (SNR) is derived and used to determine the corresponding expansion for the BICM capacity. Simple formulas for the minimum energy per bit and the wideband slope are given. BICM is found to be suboptimal in the sense that its minimum energy per bit can be larger than the corresponding value for coded modulation schemes. The minimum energy per bit using standard Gray mapping on M-PAM or M^2-QAM is given by a simple formula and shown to approach -0.34 dB as M increases. Using the low SNR expansion, a general trade-off between power and bandwidth in the wideband regime is used to show how a power loss can be traded off against a bandwidth gain.Comment: Submitted to IEEE Transactions on Information Theor

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Probabilistic Shaping for Finite Blocklengths: Distribution Matching and Sphere Shaping

    Get PDF
    In this paper, we provide for the first time a systematic comparison of distribution matching (DM) and sphere shaping (SpSh) algorithms for short blocklength probabilistic amplitude shaping. For asymptotically large blocklengths, constant composition distribution matching (CCDM) is known to generate the target capacity-achieving distribution. As the blocklength decreases, however, the resulting rate loss diminishes the efficiency of CCDM. We claim that for such short blocklengths and over the additive white Gaussian channel (AWGN), the objective of shaping should be reformulated as obtaining the most energy-efficient signal space for a given rate (rather than matching distributions). In light of this interpretation, multiset-partition DM (MPDM), enumerative sphere shaping (ESS) and shell mapping (SM), are reviewed as energy-efficient shaping techniques. Numerical results show that MPDM and SpSh have smaller rate losses than CCDM. SpSh--whose sole objective is to maximize the energy efficiency--is shown to have the minimum rate loss amongst all. We provide simulation results of the end-to-end decoding performance showing that up to 1 dB improvement in power efficiency over uniform signaling can be obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a discussion on the complexity of these algorithms from the perspective of latency, storage and computations.Comment: 18 pages, 10 figure

    Enhanced Trellis Coded Multiple Access (ETCMA)

    Full text link
    We propose an enhanced version of trellis coded multiple access (TCMA), an overloaded multiple access scheme that outperforms the original TCMA in terms of achieved spectral efficiency. Enhanced TCMA (ETCMA) performs simultaneous transmission of multiple data streams intended for users experiencing similar signal-to-noise ratios and can be employed both in the uplink and in the downlink of wireless systems, thus overcoming one of the main limitations of TCMA. Thanks to a new receiver algorithm, ETCMA is capable of delivering a significantly higher spectral efficiency. We show that ETCMA approaches the capacity of the Additive White Gaussian Noise channel for a wide range of signal-to-noise ratios.Comment: 5 pages, 5 figure

    Improving soft FEC performance for higher-order modulations via optimized bit channel mappings

    Get PDF
    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.Comment: This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-12-1454
    corecore