2,018 research outputs found

    Variations on a Theme: A Bibliography on Approaches to Theorem Proving Inspired From Satchmo

    Get PDF
    This articles is a structured bibliography on theorem provers, approaches to theorem proving, and theorem proving applications inspired from Satchmo, the model generation theorem prover developed in the mid 80es of the 20th century at ECRC, the European Computer- Industry Research Centre. Note that the bibliography given in this article is not exhaustive

    Sparse cross-products of metadata in scientific simulation management

    Get PDF
    Managing scientific data is by no means a trivial task even in a single site environment with a small number of researchers involved. We discuss some issues concerned with posing well-specified experiments in terms of parameters or instrument settings and the metadata framework that arises from doing so. We are particularly interested in parallel computer simulation experiments, where very large quantities of warehouse-able data are involved. We consider SQL databases and other framework technologies for manipulating experimental data. Our framework manages the the outputs from parallel runs that arise from large cross-products of parameter combinations. Considerable useful experiment planning and analysis can be done with the sparse metadata without fully expanding the parameter cross-products. Extra value can be obtained from simulation output that can subsequently be data-mined. We have particular interests in running large scale Monte-Carlo physics model simulations. Finding ourselves overwhelmed by the problems of managing data and compute Âżresources, we have built a prototype tool using Java and MySQL that addresses these issues. We use this example to discuss type-space management and other fundamental ideas for implementing a laboratory information management system

    On the Construction and the Structure of Off-Shell Supermultiplet Quotients

    Full text link
    Recent efforts to classify representations of supersymmetry with no central charge have focused on supermultiplets that are aptly depicted by Adinkras, wherein every supersymmetry generator transforms each component field into precisely one other component field or its derivative. Herein, we study gauge-quotients of direct sums of Adinkras by a supersymmetric image of another Adinkra and thus solve a puzzle from Ref.[2]: The so-defined supermultiplets do not produce Adinkras but more general types of supermultiplets, each depicted as a connected network of Adinkras. Iterating this gauge-quotient construction then yields an indefinite sequence of ever larger supermultiplets, reminiscent of Weyl's construction that is known to produce all finite-dimensional unitary representations in Lie algebras.Comment: 20 pages, revised to clarify the problem addressed and solve

    Range-Restricted Interpolation through Clausal Tableaux

    Full text link
    We show how variations of range-restriction and also the Horn property can be passed from inputs to outputs of Craig interpolation in first-order logic. The proof system is clausal tableaux, which stems from first-order ATP. Our results are induced by a restriction of the clausal tableau structure, which can be achieved in general by a proof transformation, also if the source proof is by resolution/paramodulation. Primarily addressed applications are query synthesis and reformulation with interpolation. Our methodical approach combines operations on proof structures with the immediate perspective of feasible implementation through incorporating highly optimized first-order provers

    Positive Unit Hyperresolution Tableaux and Their Application to Minimal Model Generation

    Get PDF
    Minimal Herbrand models of sets of first-order clauses are useful in several areas of computer science, e.g. automated theorem proving, program verification, logic programming, databases, and artificial intelligence. In most cases, the conventional model generation algorithms are inappropriate because they generate nonminimal Herbrand models and can be inefficient. This article describes an approach for generating the minimal Herbrand models of sets of first-order clauses. The approach builds upon positive unit hyperresolution (PUHR) tableaux, that are in general smaller than conventional tableaux. PUHR tableaux formalize the approach initially introduced with the theorem prover SATCHMO. Two minimal model generation procedures are described. The first one expands PUHR tableaux depth-first relying on a complement splitting expansion rule and on a form of backtracking involving constraints. A Prolog implementation, named MM-SATCHMO, of this procedure is given and its performance on benchmark suites is reported. The second minimal model generation procedure performs a breadth-first, constrained expansion of PUHR (complement) tableaux. Both procedures are optimal in the sense that each minimal model is constructed only once, and the construction of nonminimal models is interrupted as soon as possible. They are complete in the following sense The depth-first minimal model generation procedure computes all minimal Herbrand models of the considered clauses provided these models are all finite. The breadth-first minimal model generation procedure computes all finite minimal Herbrand models of the set of clauses under consideration. The proposed procedures are compared with related work in terms of both principles and performance on benchmark problems
    • …
    corecore