11,769 research outputs found

    Unconstrained and Constrained Fault-Tolerant Resource Allocation

    Full text link
    First, we study the Unconstrained Fault-Tolerant Resource Allocation (UFTRA) problem (a.k.a. FTFA problem in \cite{shihongftfa}). In the problem, we are given a set of sites equipped with an unconstrained number of facilities as resources, and a set of clients with set R\mathcal{R} as corresponding connection requirements, where every facility belonging to the same site has an identical opening (operating) cost and every client-facility pair has a connection cost. The objective is to allocate facilities from sites to satisfy R\mathcal{R} at a minimum total cost. Next, we introduce the Constrained Fault-Tolerant Resource Allocation (CFTRA) problem. It differs from UFTRA in that the number of resources available at each site ii is limited by RiR_{i}. Both problems are practical extensions of the classical Fault-Tolerant Facility Location (FTFL) problem \cite{Jain00FTFL}. For instance, their solutions provide optimal resource allocation (w.r.t. enterprises) and leasing (w.r.t. clients) strategies for the contemporary cloud platforms. In this paper, we consider the metric version of the problems. For UFTRA with uniform R\mathcal{R}, we present a star-greedy algorithm. The algorithm achieves the approximation ratio of 1.5186 after combining with the cost scaling and greedy augmentation techniques similar to \cite{Charikar051.7281.853,Mahdian021.52}, which significantly improves the result of \cite{shihongftfa} using a phase-greedy algorithm. We also study the capacitated extension of UFTRA and give a factor of 2.89. For CFTRA with uniform R\mathcal{R}, we slightly modify the algorithm to achieve 1.5186-approximation. For a more general version of CFTRA, we show that it is reducible to FTFL using linear programming

    Pinwheel Scheduling for Fault-tolerant Broadcast Disks in Real-time Database Systems

    Full text link
    The design of programs for broadcast disks which incorporate real-time and fault-tolerance requirements is considered. A generalized model for real-time fault-tolerant broadcast disks is defined. It is shown that designing programs for broadcast disks specified in this model is closely related to the scheduling of pinwheel task systems. Some new results in pinwheel scheduling theory are derived, which facilitate the efficient generation of real-time fault-tolerant broadcast disk programs.National Science Foundation (CCR-9308344, CCR-9596282

    An Adaptive Fault-Tolerant Communication Scheme for Body Sensor Networks

    Get PDF
    A high degree of reliability for critical data transmission is required in body sensor networks (BSNs). However, BSNs are usually vulnerable to channel impairments due to body fading effect and RF interference, which may potentially cause data transmission to be unreliable. In this paper, an adaptive and flexible fault-tolerant communication scheme for BSNs, namely AFTCS, is proposed. AFTCS adopts a channel bandwidth reservation strategy to provide reliable data transmission when channel impairments occur. In order to fulfill the reliability requirements of critical sensors, fault-tolerant priority and queue are employed to adaptively adjust the channel bandwidth allocation. Simulation results show that AFTCS can alleviate the effect of channel impairments, while yielding lower packet loss rate and latency for critical sensors at runtime.Comment: 10 figures, 19 page

    A Multiconstrained Grid Scheduling Algorithm with Load Balancing and Fault Tolerance

    Get PDF
    Grid environment consists of millions of dynamic and heterogeneous resources. A grid environment which deals with computing resources is computational grid and is meant for applications that involve larger computations. A scheduling algorithm is said to be efficient if and only if it performs better resource allocation even in case of resource failure. Allocation of resources is a tedious issue since it has to consider several requirements such as system load, processing cost and time, user’s deadline, and resource failure. This work attempts to design a resource allocation algorithm which is budget constrained and also targets load balancing, fault tolerance, and user satisfaction by considering the above requirements. The proposed Multiconstrained Load Balancing Fault Tolerant algorithm (MLFT) reduces the schedule makespan, schedule cost, and task failure rate and improves resource utilization. The proposed MLFT algorithm is evaluated using Gridsim toolkit and the results are compared with the recent algorithms which separately concentrate on all these factors. The comparison results ensure that the proposed algorithm works better than its counterparts
    • …
    corecore