5 research outputs found

    Robust Multi-subspace Analysis Using Novel Column L0-norm Constrained Matrix Factorization

    Full text link
    We study the underlying structure of data (approximately) generated from a union of independent subspaces. Traditional methods learn only one subspace, failing to discover the multi-subspace structure, while state-of-the-art methods analyze the multi-subspace structure using data themselves as the dictionary, which cannot offer the explicit basis to span each subspace and are sensitive to errors via an indirect representation. Additionally, they also suffer from a high computational complexity, being quadratic or cubic to the sample size. To tackle all these problems, we propose a method, called Matrix Factorization with Column L0-norm constraint (MFC0), that can simultaneously learn the basis for each subspace, generate a direct sparse representation for each data sample, as well as removing errors in the data in an efficient way. Furthermore, we develop a first-order alternating direction algorithm, whose computational complexity is linear to the sample size, to stably and effectively solve the nonconvex objective function and non- smooth l0-norm constraint of MFC0. Experimental results on both synthetic and real-world datasets demonstrate that besides the superiority over traditional and state-of-the-art methods for subspace clustering, data reconstruction, error correction, MFC0 also shows its uniqueness for multi-subspace basis learning and direct sparse representation.Comment: 13 pages, 8 figures, 8 table

    Deep Self-representative Concept Factorization Network for Representation Learning

    Full text link
    In this paper, we investigate the unsupervised deep representation learning issue and technically propose a novel framework called Deep Self-representative Concept Factorization Network (DSCF-Net), for clustering deep features. To improve the representation and clustering abilities, DSCF-Net explicitly considers discovering hidden deep semantic features, enhancing the robustness proper-ties of the deep factorization to noise and preserving the local man-ifold structures of deep features. Specifically, DSCF-Net seamlessly integrates the robust deep concept factorization, deep self-expressive representation and adaptive locality preserving feature learning into a unified framework. To discover hidden deep repre-sentations, DSCF-Net designs a hierarchical factorization architec-ture using multiple layers of linear transformations, where the hierarchical representation is performed by formulating the prob-lem as optimizing the basis concepts in each layer to improve the representation indirectly. DSCF-Net also improves the robustness by subspace recovery for sparse error correction firstly and then performs the deep factorization in the recovered visual subspace. To obtain locality-preserving representations, we also present an adaptive deep self-representative weighting strategy by using the coefficient matrix as the adaptive reconstruction weights to keep the locality of representations. Extensive comparison results with several other related models show that DSCF-Net delivers state-of-the-art performance on several public databases.Comment: Accepted by SDM 202

    Joint Label Prediction based Semi-Supervised Adaptive Concept Factorization for Robust Data Representation

    Full text link
    Constrained Concept Factorization (CCF) yields the enhanced representation ability over CF by incorporating label information as additional constraints, but it cannot classify and group unlabeled data appropriately. Minimizing the difference between the original data and its reconstruction directly can enable CCF to model a small noisy perturbation, but is not robust to gross sparse errors. Besides, CCF cannot preserve the manifold structures in new representation space explicitly, especially in an adaptive manner. In this paper, we propose a joint label prediction based Robust Semi-Supervised Adaptive Concept Factorization (RS2ACF) framework. To obtain robust representation, RS2ACF relaxes the factorization to make it simultaneously stable to small entrywise noise and robust to sparse errors. To enrich prior knowledge to enhance the discrimination, RS2ACF clearly uses class information of labeled data and more importantly propagates it to unlabeled data by jointly learning an explicit label indicator for unlabeled data. By the label indicator, RS2ACF can ensure the unlabeled data of the same predicted label to be mapped into the same class in feature space. Besides, RS2ACF incorporates the joint neighborhood reconstruction error over the new representations and predicted labels of both labeled and unlabeled data, so the manifold structures can be preserved explicitly and adaptively in the representation space and label space at the same time. Owing to the adaptive manner, the tricky process of determining the neighborhood size or kernel width can be avoided. Extensive results on public databases verify that our RS2ACF can deliver state-of-the-art data representation, compared with other related methods.Comment: Accepted at IEEE TKD

    Dual-constrained Deep Semi-Supervised Coupled Factorization Network with Enriched Prior

    Full text link
    Nonnegative matrix factorization is usually powerful for learning the "shallow" parts-based representation, but it clearly fails to discover deep hierarchical information within both the basis and representation spaces. In this paper, we technically propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net, for learning the hierarchical coupled representations. To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network. Specifically, DS2CF-Net designs a deep coupled factorization architecture using multi-layers of linear transformations, which coupled updates the bases and new representations in each layer. To improve the discriminating ability of learned deep representations and deep coefficients, our network clearly considers enriching the supervised prior by the joint deep coefficients-regularized label prediction, and incorporates enriched prior information as additional label and structure constraints. The label constraint can enable the samples of the same label to have the same coordinate in the new feature space, while the structure constraint forces the coefficient matrices in each layer to be block-diagonal so that the enhanced prior using the self-expressive label propagation are more accurate. Our network also integrates the adaptive dual-graph learning to retain the local manifold structures of both the data manifold and feature manifold by minimizing the reconstruction errors in each layer. Extensive experiments on several real databases demonstrate that our DS2CF-Net can obtain state-of-the-art performance for representation learning and clustering

    Flexible Auto-weighted Local-coordinate Concept Factorization: A Robust Framework for Unsupervised Clustering

    Full text link
    Concept Factorization (CF) and its variants may produce inaccurate representation and clustering results due to the sensitivity to noise, hard constraint on the reconstruction error and pre-obtained approximate similarities. To improve the representation ability, a novel unsupervised Robust Flexible Auto-weighted Local-coordinate Concept Factorization (RFA-LCF) framework is proposed for clustering high-dimensional data. Specifically, RFA-LCF integrates the robust flexible CF by clean data space recovery, robust sparse local-coordinate coding and adaptive weighting into a unified model. RFA-LCF improves the representations by enhancing the robustness of CF to noise and errors, providing a flexible constraint on the reconstruction error and optimizing the locality jointly. For robust learning, RFA-LCF clearly learns a sparse projection to recover the underlying clean data space, and then the flexible CF is performed in the projected feature space. RFA-LCF also uses a L2,1-norm based flexible residue to encode the mismatch between the recovered data and its reconstruction, and uses the robust sparse local-coordinate coding to represent data using a few nearby basis concepts. For auto-weighting, RFA-LCF jointly preserves the manifold structures in the basis concept space and new coordinate space in an adaptive manner by minimizing the reconstruction errors on clean data, anchor points and coordinates. By updating the local-coordinate preserving data, basis concepts and new coordinates alternately, the representation abilities can be potentially improved. Extensive results on public databases show that RFA-LCF delivers the state-of-the-art clustering results compared with other related methods.Comment: Accepted by IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE
    corecore