1 research outputs found

    Constant-round Leakage-resilient Zero-knowledge from Collision Resistance

    Get PDF
    In this paper, we present a constant-round leakage-resilient zero-knowledge argument system for NP under the assumption of the existence of collision-resistant hash function family. That is, using collision-resistant hash functions, we construct a constant-round zero-knowledge argument system that has the following zero-knowledge property: Even against any cheating verifier that obtains arbitrary amount of leakage on the prover\u27s internal secret state, a simulator can simulate the verifier\u27s view by obtaining the same amount of leakage on the witness. Previously, leakage-resilient zero-knowledge proofs/arguments for NP were constructed only under a relaxed security definition (Garg, Jain, and Sahai, CRYPTO\u2711) or under the DDH assumption (Pandey, TCC\u2714). Our leakage-resilient zero-knowledge argument system satisfies an additional property that it is simultaneously leakage-resilient zero-knowledge, meaning that both zero-knowledgeness and soundness hold in the presence of leakage
    corecore