3,573 research outputs found

    Enabling the Multi-User Generalized Degrees of Freedom in the Gaussian Cellular Channel

    Full text link
    There has been major progress over the last decade in understanding the classical interference channel (IC). Recent key results show that constant bit gap capacity results can be obtained from linear deterministic models (LDMs). However, it is widely unrecognized that the time-invariant, frequency-flat cellular channel, which contains the IC as a special case, possesses some additional generalized degrees of freedom (GDoF) due to multi-user operation. This was proved for the LDM cellular channel very recently but is an open question for the corresponding Gaussian counterpart. In this paper, we close this gap and provide an achievable sum-rate for the Gaussian cellular channel which is within a constant bit gap of the LDM sum capacity. We show that the additional GDoFs from the LDM cellular channel carry over. This is enabled by signal scale alignment. In particular, the multi-user gain reduces the interference by half in the 2-user per cell case compared to the IC.Comment: 5 pages, to appear in IEEE ITW 2014, Hobart, Australi

    Approximate Sum-Capacity of K-user Cognitive Interference Channels with Cumulative Message Sharing

    Full text link
    This paper considers the K user cognitive interference channel with one primary and K-1 secondary/cognitive transmitters with a cumulative message sharing structure, i.e cognitive transmitter i∈[2:K]i\in [2:K] knows non-causally all messages of the users with index less than i. We propose a computable outer bound valid for any memoryless channel. We first evaluate the sum-rate outer bound for the high- SNR linear deterministic approximation of the Gaussian noise channel. This is shown to be capacity for the 3-user channel with arbitrary channel gains and the sum-capacity for the symmetric K-user channel. Interestingly. for the K user channel having only the K th cognitive know all the other messages is sufficient to achieve capacity i.e cognition at transmitter 2 to K-1 is not needed. Next the sum capacity of the symmetric Gaussian noise channel is characterized to within a constant additive and multiplicative gap. The proposed achievable scheme for the additive gap is based on Dirty paper coding and can be thought of as a MIMO-broadcast scheme where only one encoding order is possible due to the message sharing structure. As opposed to other multiuser interference channel models, a single scheme suffices for both the weak and strong interference regimes. With this scheme the generalized degrees of freedom (gDOF) is shown to be a function of K, in contrast to the non cognitive case and the broadcast channel case. Interestingly, it is show that as the number of users grows to infinity the gDoF of the K-user cognitive interference channel with cumulative message sharing tends to the gDoF of a broadcast channel with a K-antenna transmitter and K single-antenna receivers. The analytical additive additive and multiplicative gaps are a function of the number of users. Numerical evaluations of inner and outer bounds show that the actual gap is less than the analytical one.Comment: Journa

    The Approximate Capacity of the Many-to-One and One-to-Many Gaussian Interference Channels

    Full text link
    Recently, Etkin, Tse, and Wang found the capacity region of the two-user Gaussian interference channel to within one bit/s/Hz. A natural goal is to apply this approach to the Gaussian interference channel with an arbitrary number of users. We make progress towards this goal by finding the capacity region of the many-to-one and one-to-many Gaussian interference channels to within a constant number of bits. The result makes use of a deterministic model to provide insight into the Gaussian channel. The deterministic model makes explicit the dimension of signal scale. A central theme emerges: the use of lattice codes for alignment of interfering signals on the signal scale.Comment: 45 pages, 16 figures. Submitted to IEEE Transactions on Information Theor

    On the Capacity Region of the Two-user Interference Channel with a Cognitive Relay

    Full text link
    This paper considers a variation of the classical two-user interference channel where the communication of two interfering source-destination pairs is aided by an additional node that has a priori knowledge of the messages to be transmitted, which is referred to as the it cognitive relay. For this Interference Channel with a Cognitive Relay (ICCR) In particular, for the class of injective semi-deterministic ICCRs, a sum-rate upper bound is derived for the general memoryless ICCR and further tightened for the Linear Deterministic Approximation (LDA) of the Gaussian noise channel at high SNR, which disregards the noise and focuses on the interaction among the users' signals. The capacity region of the symmetric LDA is completely characterized except for the regime of moderately weak interference and weak links from the CR to the destinations. The insights gained from the analysis of the LDA are then translated back to the symmetric Gaussian noise channel (GICCR). For the symmetric GICCR, an approximate characterization (to within a constant gap) of the capacity region is provided for a parameter regime where capacity was previously unknown. The approximately optimal scheme suggests that message cognition at a relay is beneficial for interference management as it enables simultaneous over the air neutralization of the interference at both destinations

    Upper Bounds and Duality Relations of the Linear Deterministic Sum Capacity for Cellular Systems

    Full text link
    The MAC-BC duality of information theory and wireless communications is an intriguing concept for efficient algorithm design. However, no concept is known so far for the important cellular channel. To make progress on this front, we consider in this paper the linear deterministic cellular channel. In particular, we prove duality of a network with two interfering MACs in each cell and a network with two interfering BCs in each cell. The operational region is confined to the weak interference regime. First, achievable schemes as well as upper bounds will be provided. These bounds are the same for both channels. We will show, that for specific cases the upper bound corresponds to the achievable scheme and hence establishing a duality relationship between them.Comment: 6 pages, to appear in IEEE ICC 2014, Sydney, Australi
    • …
    corecore