4 research outputs found

    Constant Time Graph Neural Networks

    Full text link
    The recent advancements in graph neural networks (GNNs) have led to state-of-the-art performances in various applications, including chemo-informatics, question-answering systems, and recommender systems. However, scaling up these methods to huge graphs, such as social networks and Web graphs, remains a challenge. In particular, the existing methods for accelerating GNNs either are not theoretically guaranteed in terms of the approximation error or incur at least a linear time computation cost. In this study, we reveal the query complexity of the uniform node sampling scheme for Message Passing Neural Networks including GraphSAGE, graph attention networks (GATs), and graph convolutional networks (GCNs). Surprisingly, our analysis reveals that the complexity of the node sampling method is completely independent of the number of the nodes, edges, and neighbors of the input and depends only on the error tolerance and confidence probability while providing a theoretical guarantee for the approximation error. To the best of our knowledge, this is the first paper to provide a theoretical guarantee of approximation for GNNs within constant time. Through experiments with synthetic and real-world datasets, we investigated the speed and precision of the node sampling scheme and validated our theoretical results

    Adaptive Propagation Graph Convolutional Network

    Full text link
    Graph convolutional networks (GCNs) are a family of neural network models that perform inference on graph data by interleaving vertex-wise operations and message-passing exchanges across nodes. Concerning the latter, two key questions arise: (i) how to design a differentiable exchange protocol (e.g., a 1-hop Laplacian smoothing in the original GCN), and (ii) how to characterize the trade-off in complexity with respect to the local updates. In this paper, we show that state-of-the-art results can be achieved by adapting the number of communication steps independently at every node. In particular, we endow each node with a halting unit (inspired by Graves' adaptive computation time) that after every exchange decides whether to continue communicating or not. We show that the proposed adaptive propagation GCN (AP-GCN) achieves superior or similar results to the best proposed models so far on a number of benchmarks, while requiring a small overhead in terms of additional parameters. We also investigate a regularization term to enforce an explicit trade-off between communication and accuracy. The code for the AP-GCN experiments is released as an open-source library.Comment: Published in IEEE Transaction on Neural Networks and Learning System

    Scaling Graph Neural Networks with Approximate PageRank

    Full text link
    Graph neural networks (GNNs) have emerged as a powerful approach for solving many network mining tasks. However, learning on large graphs remains a challenge - many recently proposed scalable GNN approaches rely on an expensive message-passing procedure to propagate information through the graph. We present the PPRGo model which utilizes an efficient approximation of information diffusion in GNNs resulting in significant speed gains while maintaining state-of-the-art prediction performance. In addition to being faster, PPRGo is inherently scalable, and can be trivially parallelized for large datasets like those found in industry settings. We demonstrate that PPRGo outperforms baselines in both distributed and single-machine training environments on a number of commonly used academic graphs. To better analyze the scalability of large-scale graph learning methods, we introduce a novel benchmark graph with 12.4 million nodes, 173 million edges, and 2.8 million node features. We show that training PPRGo from scratch and predicting labels for all nodes in this graph takes under 2 minutes on a single machine, far outpacing other baselines on the same graph. We discuss the practical application of PPRGo to solve large-scale node classification problems at Google.Comment: Published as a Conference Paper at ACM SIGKDD 202

    A Survey on The Expressive Power of Graph Neural Networks

    Full text link
    Graph neural networks (GNNs) are effective machine learning models for various graph learning problems. Despite their empirical successes, the theoretical limitations of GNNs have been revealed recently. Consequently, many GNN models have been proposed to overcome these limitations. In this survey, we provide a comprehensive overview of the expressive power of GNNs and provably powerful variants of GNNs.Comment: 42 page
    corecore