1,087 research outputs found

    Dynamic Set Intersection

    Full text link
    Consider the problem of maintaining a family FF of dynamic sets subject to insertions, deletions, and set-intersection reporting queries: given S,SFS,S'\in F, report every member of SSS\cap S' in any order. We show that in the word RAM model, where ww is the word size, given a cap dd on the maximum size of any set, we can support set intersection queries in O(dw/log2w)O(\frac{d}{w/\log^2 w}) expected time, and updates in O(logw)O(\log w) expected time. Using this algorithm we can list all tt triangles of a graph G=(V,E)G=(V,E) in O(m+mαw/log2w+t)O(m+\frac{m\alpha}{w/\log^2 w} +t) expected time, where m=Em=|E| and α\alpha is the arboricity of GG. This improves a 30-year old triangle enumeration algorithm of Chiba and Nishizeki running in O(mα)O(m \alpha) time. We provide an incremental data structure on FF that supports intersection {\em witness} queries, where we only need to find {\em one} eSSe\in S\cap S'. Both queries and insertions take O\paren{\sqrt \frac{N}{w/\log^2 w}} expected time, where N=SFSN=\sum_{S\in F} |S|. Finally, we provide time/space tradeoffs for the fully dynamic set intersection reporting problem. Using MM words of space, each update costs O(MlogN)O(\sqrt {M \log N}) expected time, each reporting query costs O(NlogNMop+1)O(\frac{N\sqrt{\log N}}{\sqrt M}\sqrt{op+1}) expected time where opop is the size of the output, and each witness query costs O(NlogNM+logN)O(\frac{N\sqrt{\log N}}{\sqrt M} + \log N) expected time.Comment: Accepted to WADS 201

    Constant Amortized Time Enumeration of Eulerian trails

    Full text link
    In this paper, we consider enumeration problems for edge-distinct and vertex-distinct Eulerian trails. Here, two Eulerian trails are \emph{edge-distinct} if the edge sequences are not identical, and they are \emph{vertex-distinct} if the vertex sequences are not identical. As the main result, we propose optimal enumeration algorithms for both problems, that is, these algorithm runs in O(N)\mathcal{O}(N) total time, where NN is the number of solutions. Our algorithms are based on the reverse search technique introduced by [Avis and Fukuda, DAM 1996], and the push out amortization technique introduced by [Uno, WADS 2015]

    The Wavelet Trie: Maintaining an Indexed Sequence of Strings in Compressed Space

    Full text link
    An indexed sequence of strings is a data structure for storing a string sequence that supports random access, searching, range counting and analytics operations, both for exact matches and prefix search. String sequences lie at the core of column-oriented databases, log processing, and other storage and query tasks. In these applications each string can appear several times and the order of the strings in the sequence is relevant. The prefix structure of the strings is relevant as well: common prefixes are sought in strings to extract interesting features from the sequence. Moreover, space-efficiency is highly desirable as it translates directly into higher performance, since more data can fit in fast memory. We introduce and study the problem of compressed indexed sequence of strings, representing indexed sequences of strings in nearly-optimal compressed space, both in the static and dynamic settings, while preserving provably good performance for the supported operations. We present a new data structure for this problem, the Wavelet Trie, which combines the classical Patricia Trie with the Wavelet Tree, a succinct data structure for storing a compressed sequence. The resulting Wavelet Trie smoothly adapts to a sequence of strings that changes over time. It improves on the state-of-the-art compressed data structures by supporting a dynamic alphabet (i.e. the set of distinct strings) and prefix queries, both crucial requirements in the aforementioned applications, and on traditional indexes by reducing space occupancy to close to the entropy of the sequence

    Shortest vector from lattice sieving: A few dimensions for free

    Get PDF
    Asymptotically, the best known algorithms for solving the Shortest Vector Problem (SVP) in a lattice of dimension n are sieve algorithms, which have heuristic complexity estimates ranging from (4/3)n+o(n) down to (3/2)n/2+o(n) when Locality Sensitive Hashing techniques are used. Sieve algorithms are however outperformed by pruned enumeration algorithms in practice by several orders of magnitude, despite the larger super-exponential asymptotical complexity 2Θ(n log n) of the latter. In this work, we show a concrete improvement of sieve-type algorithms. Precisely, we show that a few calls to the sieve algorithm in lattices of dimension less than n - d solves SVP in dimension n, where d = Θ(n/ log n). Although our improvement is only sub-exponential, its practical effect in relevant dimensions is quite significant. We implemented it over a simple sieve algorithm with (4/3)n+o(n) complexity, and it outperforms the best sieve algorithms from the literature by a factor of 10 in dimensions 7080. It performs less than an order of magnitude slower than pruned enumeration in the same range. By design, this improvement can also be applied to most other variants of sieve algorithms, including LSH sieve algorithms and tuple-sieve algorithms. In this light, we may expect sieve-techniques to outperform pruned enumeration in practice in the near future
    corecore