3 research outputs found

    Consistent polynomial-time unseeded graph matching for Lipschitz graphons

    Full text link
    We propose a consistent polynomial-time method for the unseeded node matching problem for networks with smooth underlying structures. Despite widely conjectured by the research community that the structured graph matching problem to be significantly easier than its worst case counterpart, well-known to be NP-hard, the statistical version of the problem has stood a challenge that resisted any solution both provable and polynomial-time. The closest existing work requires quasi-polynomial time. Our method is based on the latest advances in graphon estimation techniques and analysis on the concentration of empirical Wasserstein distances. Its core is a simple yet unconventional sampling-and-matching scheme that reduces the problem from unseeded to seeded. Our method allows flexible efficiencies, is convenient to analyze and potentially can be extended to more general settings. Our work enables a rich variety of subsequent estimations and inferences.Comment: 13 page

    Matchability of heterogeneous networks pairs

    Full text link
    We consider the problem of graph matchability in non-identically distributed networks. In a general class of edge-independent networks, we demonstrate that graph matchability can be lost with high probability when matching the networks directly. We further demonstrate that under mild model assumptions, matchability is almost perfectly recovered by centering the networks using Universal Singular Value Thresholding before matching. These theoretical results are then demonstrated in both real and synthetic simulation settings. We also recover analogous core-matchability results in a very general core-junk network model, wherein some vertices do not correspond between the graph pair.Comment: 44 pages, 10 figure

    The Importance of Being Correlated: Implications of Dependence in Joint Spectral Inference across Multiple Networks

    Full text link
    Spectral inference on multiple networks is a rapidly-developing subfield of graph statistics. Recent work has demonstrated that joint, or simultaneous, spectral embedding of multiple independent network realizations can deliver more accurate estimation than individual spectral decompositions of those same networks. Little attention has been paid, however, to the network correlation that such joint embedding procedures necessarily induce. In this paper, we present a detailed analysis of induced correlation in a {\em generalized omnibus} embedding for multiple networks. We show that our embedding procedure is flexible and robust, and, moreover, we prove a central limit theorem for this embedding and explicitly compute the limiting covariance. We examine how this covariance can impact inference in a network time series, and we construct an appropriately calibrated omnibus embedding that can detect changes in real biological networks that previous embedding procedures could not discern. Our analysis confirms that the effect of induced correlation can be both subtle and transformative, with import in theory and practice
    corecore