150,449 research outputs found

    COSST: Multi-organ Segmentation with Partially Labeled Datasets Using Comprehensive Supervisions and Self-training

    Full text link
    Deep learning models have demonstrated remarkable success in multi-organ segmentation but typically require large-scale datasets with all organs of interest annotated. However, medical image datasets are often low in sample size and only partially labeled, i.e., only a subset of organs are annotated. Therefore, it is crucial to investigate how to learn a unified model on the available partially labeled datasets to leverage their synergistic potential. In this paper, we systematically investigate the partial-label segmentation problem with theoretical and empirical analyses on the prior techniques. We revisit the problem from a perspective of partial label supervision signals and identify two signals derived from ground truth and one from pseudo labels. We propose a novel two-stage framework termed COSST, which effectively and efficiently integrates comprehensive supervision signals with self-training. Concretely, we first train an initial unified model using two ground truth-based signals and then iteratively incorporate the pseudo label signal to the initial model using self-training. To mitigate performance degradation caused by unreliable pseudo labels, we assess the reliability of pseudo labels via outlier detection in latent space and exclude the most unreliable pseudo labels from each self-training iteration. Extensive experiments are conducted on one public and three private partial-label segmentation tasks over 12 CT datasets. Experimental results show that our proposed COSST achieves significant improvement over the baseline method, i.e., individual networks trained on each partially labeled dataset. Compared to the state-of-the-art partial-label segmentation methods, COSST demonstrates consistent superior performance on various segmentation tasks and with different training data sizes

    Multi-label classification models for heterogeneous data: an ensemble-based approach.

    Get PDF
    In recent years, the multi-label classification gained attention of the scientific community given its ability to solve real-world problems where each instance of the dataset may be associated with several class labels simultaneously, such as multimedia categorization or medical problems. The first objective of this dissertation is to perform a thorough review of the state-of-the-art ensembles of multi-label classifiers (EMLCs). Its aim is twofold: 1) study state-of-the-art ensembles of multi-label classifiers and categorize them proposing a novel taxonomy; and 2) perform an experimental study to give some tips and guidelines to select the method that perform the best according to the characteristics of a given problem. Since most of the EMLCs are based on creating diverse members by randomly selecting instances, input features, or labels, our main objective is to propose novel ensemble methods while considering the characteristics of the data. In this thesis, we propose two evolutionary algorithms to build EMLCs. The first proposal encodes an entire EMLC in each individual, where each member is focused on a small subset of the labels. On the other hand, the second algorithm encodes separate members in each individual, then combining the individuals of the population to build the ensemble. Finally, both methods are demonstrated to be more consistent and perform significantly better than state-of-the-art methods in multi-label classification

    Multi-utility Learning: Structured-output Learning with Multiple Annotation-specific Loss Functions

    Full text link
    Structured-output learning is a challenging problem; particularly so because of the difficulty in obtaining large datasets of fully labelled instances for training. In this paper we try to overcome this difficulty by presenting a multi-utility learning framework for structured prediction that can learn from training instances with different forms of supervision. We propose a unified technique for inferring the loss functions most suitable for quantifying the consistency of solutions with the given weak annotation. We demonstrate the effectiveness of our framework on the challenging semantic image segmentation problem for which a wide variety of annotations can be used. For instance, the popular training datasets for semantic segmentation are composed of images with hard-to-generate full pixel labellings, as well as images with easy-to-obtain weak annotations, such as bounding boxes around objects, or image-level labels that specify which object categories are present in an image. Experimental evaluation shows that the use of annotation-specific loss functions dramatically improves segmentation accuracy compared to the baseline system where only one type of weak annotation is used
    corecore