1,563 research outputs found

    Multi-utility Learning: Structured-output Learning with Multiple Annotation-specific Loss Functions

    Full text link
    Structured-output learning is a challenging problem; particularly so because of the difficulty in obtaining large datasets of fully labelled instances for training. In this paper we try to overcome this difficulty by presenting a multi-utility learning framework for structured prediction that can learn from training instances with different forms of supervision. We propose a unified technique for inferring the loss functions most suitable for quantifying the consistency of solutions with the given weak annotation. We demonstrate the effectiveness of our framework on the challenging semantic image segmentation problem for which a wide variety of annotations can be used. For instance, the popular training datasets for semantic segmentation are composed of images with hard-to-generate full pixel labellings, as well as images with easy-to-obtain weak annotations, such as bounding boxes around objects, or image-level labels that specify which object categories are present in an image. Experimental evaluation shows that the use of annotation-specific loss functions dramatically improves segmentation accuracy compared to the baseline system where only one type of weak annotation is used

    Rank-based Decomposable Losses in Machine Learning: A Survey

    Full text link
    Recent works have revealed an essential paradigm in designing loss functions that differentiate individual losses vs. aggregate losses. The individual loss measures the quality of the model on a sample, while the aggregate loss combines individual losses/scores over each training sample. Both have a common procedure that aggregates a set of individual values to a single numerical value. The ranking order reflects the most fundamental relation among individual values in designing losses. In addition, decomposability, in which a loss can be decomposed into an ensemble of individual terms, becomes a significant property of organizing losses/scores. This survey provides a systematic and comprehensive review of rank-based decomposable losses in machine learning. Specifically, we provide a new taxonomy of loss functions that follows the perspectives of aggregate loss and individual loss. We identify the aggregator to form such losses, which are examples of set functions. We organize the rank-based decomposable losses into eight categories. Following these categories, we review the literature on rank-based aggregate losses and rank-based individual losses. We describe general formulas for these losses and connect them with existing research topics. We also suggest future research directions spanning unexplored, remaining, and emerging issues in rank-based decomposable losses.Comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI
    corecore