9 research outputs found

    Causal Dependence Tree Approximations of Joint Distributions for Multiple Random Processes

    Full text link
    We investigate approximating joint distributions of random processes with causal dependence tree distributions. Such distributions are particularly useful in providing parsimonious representation when there exists causal dynamics among processes. By extending the results by Chow and Liu on dependence tree approximations, we show that the best causal dependence tree approximation is the one which maximizes the sum of directed informations on its edges, where best is defined in terms of minimizing the KL-divergence between the original and the approximate distribution. Moreover, we describe a low-complexity algorithm to efficiently pick this approximate distribution.Comment: 9 pages, 15 figure

    Learning Graphs from Linear Measurements: Fundamental Trade-offs and Applications

    Get PDF
    We consider a specific graph learning task: reconstructing a symmetric matrix that represents an underlying graph using linear measurements. We present a sparsity characterization for distributions of random graphs (that are allowed to contain high-degree nodes), based on which we study fundamental trade-offs between the number of measurements, the complexity of the graph class, and the probability of error. We first derive a necessary condition on the number of measurements. Then, by considering a three-stage recovery scheme, we give a sufficient condition for recovery. Furthermore, assuming the measurements are Gaussian IID, we prove upper and lower bounds on the (worst-case) sample complexity for both noisy and noiseless recovery. In the special cases of the uniform distribution on trees with n nodes and the Erdős-Rényi (n,p) class, the fundamental trade-offs are tight up to multiplicative factors with noiseless measurements. In addition, for practical applications, we design and implement a polynomial-time (in n ) algorithm based on the three-stage recovery scheme. Experiments show that the heuristic algorithm outperforms basis pursuit on star graphs. We apply the heuristic algorithm to learn admittance matrices in electric grids. Simulations for several canonical graph classes and IEEE power system test cases demonstrate the effectiveness and robustness of the proposed algorithm for parameter reconstruction

    Learning Graph Parameters from Linear Measurements: Fundamental Trade-offs and Application to Electric Grids

    Get PDF
    We consider a specific graph learning task: reconstructing a symmetric matrix that represents an underlying graph using linear measurements. We study fundamental trade-offs between the number of measurements (sample complexity), the complexity of the graph class, and the probability of error by first deriving a necessary condition (fundamental limit) on the number of measurements. Then, by considering a two-stage recovery scheme, we give a sufficient condition for recovery. In the special cases of the uniform distribution on trees with n nodes and the Erdös-Rényi (n, p) class, the sample complexity derived from the fundamental trade-offs is tight up to multiplicative factors. In addition, we design and implement a polynomial-time (in n) algorithm based on the two-stage recovery scheme. Simulations for several canonical graph classes and IEEE power system test cases demonstrate the effectiveness of the proposed algorithm for accurate topology and parameter recovery

    Learning Graph Parameters from Linear Measurements: Fundamental Trade-offs and Application to Electric Grids

    Get PDF
    We consider a specific graph learning task: reconstructing a symmetric matrix that represents an underlying graph using linear measurements. We study fundamental trade-offs between the number of measurements (sample complexity), the complexity of the graph class, and the probability of error by first deriving a necessary condition (fundamental limit) on the number of measurements. Then, by considering a two-stage recovery scheme, we give a sufficient condition for recovery. In the special cases of the uniform distribution on trees with n nodes and the Erdös-Rényi (n, p) class, the sample complexity derived from the fundamental trade-offs is tight up to multiplicative factors. In addition, we design and implement a polynomial-time (in n) algorithm based on the two-stage recovery scheme. Simulations for several canonical graph classes and IEEE power system test cases demonstrate the effectiveness of the proposed algorithm for accurate topology and parameter recovery

    Learning Graphs from Linear Measurements: Fundamental Trade-offs and Applications

    Get PDF
    We consider a specific graph learning task: reconstructing a symmetric matrix that represents an underlying graph using linear measurements. We present a sparsity characterization for distributions of random graphs (that are allowed to contain high-degree nodes), based on which we study fundamental trade-offs between the number of measurements, the complexity of the graph class, and the probability of error. We first derive a necessary condition on the number of measurements. Then, by considering a three-stage recovery scheme, we give a sufficient condition for recovery. Furthermore, assuming the measurements are Gaussian IID, we prove upper and lower bounds on the (worst-case) sample complexity for both noisy and noiseless recovery. In the special cases of the uniform distribution on trees with n nodes and the Erdős-Rényi (n,p) class, the fundamental trade-offs are tight up to multiplicative factors with noiseless measurements. In addition, for practical applications, we design and implement a polynomial-time (in n ) algorithm based on the three-stage recovery scheme. Experiments show that the heuristic algorithm outperforms basis pursuit on star graphs. We apply the heuristic algorithm to learn admittance matrices in electric grids. Simulations for several canonical graph classes and IEEE power system test cases demonstrate the effectiveness and robustness of the proposed algorithm for parameter reconstruction

    Learning and Testing Latent-Tree Ising Models Efficiently

    Full text link
    We provide time- and sample-efficient algorithms for learning and testing latent-tree Ising models, i.e. Ising models that may only be observed at their leaf nodes. On the learning side, we obtain efficient algorithms for learning a tree-structured Ising model whose leaf node distribution is close in Total Variation Distance, improving on the results of prior work. On the testing side, we provide an efficient algorithm with fewer samples for testing whether two latent-tree Ising models have leaf-node distributions that are close or far in Total Variation distance. We obtain our algorithms by showing novel localization results for the total variation distance between the leaf-node distributions of tree-structured Ising models, in terms of their marginals on pairs of leaves
    corecore