34,903 research outputs found

    Narrowing the Gap: Random Forests In Theory and In Practice

    Full text link
    Despite widespread interest and practical use, the theoretical properties of random forests are still not well understood. In this paper we contribute to this understanding in two ways. We present a new theoretically tractable variant of random regression forests and prove that our algorithm is consistent. We also provide an empirical evaluation, comparing our algorithm and other theoretically tractable random forest models to the random forest algorithm used in practice. Our experiments provide insight into the relative importance of different simplifications that theoreticians have made to obtain tractable models for analysis.Comment: Under review by the International Conference on Machine Learning (ICML) 201

    Consistency of random forests

    Get PDF
    Random forests are a learning algorithm proposed by Breiman [Mach. Learn. 45 (2001) 5--32] that combines several randomized decision trees and aggregates their predictions by averaging. Despite its wide usage and outstanding practical performance, little is known about the mathematical properties of the procedure. This disparity between theory and practice originates in the difficulty to simultaneously analyze both the randomization process and the highly data-dependent tree structure. In the present paper, we take a step forward in forest exploration by proving a consistency result for Breiman's [Mach. Learn. 45 (2001) 5--32] original algorithm in the context of additive regression models. Our analysis also sheds an interesting light on how random forests can nicely adapt to sparsity. 1. Introduction. Random forests are an ensemble learning method for classification and regression that constructs a number of randomized decision trees during the training phase and predicts by averaging the results. Since its publication in the seminal paper of Breiman (2001), the procedure has become a major data analysis tool, that performs well in practice in comparison with many standard methods. What has greatly contributed to the popularity of forests is the fact that they can be applied to a wide range of prediction problems and have few parameters to tune. Aside from being simple to use, the method is generally recognized for its accuracy and its ability to deal with small sample sizes, high-dimensional feature spaces and complex data structures. The random forest methodology has been successfully involved in many practical problems, including air quality prediction (winning code of the EMC data science global hackathon in 2012, see http://www.kaggle.com/c/dsg-hackathon), chemoinformatics [Svetnik et al. (2003)], ecology [Prasad, Iverson and Liaw (2006), Cutler et al. (2007)], 3

    Random Forests for Big Data

    Get PDF
    Big Data is one of the major challenges of statistical science and has numerous consequences from algorithmic and theoretical viewpoints. Big Data always involve massive data but they also often include online data and data heterogeneity. Recently some statistical methods have been adapted to process Big Data, like linear regression models, clustering methods and bootstrapping schemes. Based on decision trees combined with aggregation and bootstrap ideas, random forests were introduced by Breiman in 2001. They are a powerful nonparametric statistical method allowing to consider in a single and versatile framework regression problems, as well as two-class and multi-class classification problems. Focusing on classification problems, this paper proposes a selective review of available proposals that deal with scaling random forests to Big Data problems. These proposals rely on parallel environments or on online adaptations of random forests. We also describe how related quantities -- such as out-of-bag error and variable importance -- are addressed in these methods. Then, we formulate various remarks for random forests in the Big Data context. Finally, we experiment five variants on two massive datasets (15 and 120 millions of observations), a simulated one as well as real world data. One variant relies on subsampling while three others are related to parallel implementations of random forests and involve either various adaptations of bootstrap to Big Data or to "divide-and-conquer" approaches. The fifth variant relates on online learning of random forests. These numerical experiments lead to highlight the relative performance of the different variants, as well as some of their limitations
    • …
    corecore