30,959 research outputs found

    Conditional Random Fields and Support Vector Machines: A Hybrid Approach

    Full text link
    We propose a novel hybrid loss for multiclass and structured prediction problems that is a convex combination of log loss for Conditional Random Fields (CRFs) and a multiclass hinge loss for Support Vector Machines (SVMs). We provide a sufficient condition for when the hybrid loss is Fisher consistent for classification. This condition depends on a measure of dominance between labels - specifically, the gap in per observation probabilities between the most likely labels. We also prove Fisher consistency is necessary for parametric consistency when learning models such as CRFs. We demonstrate empirically that the hybrid loss typically performs as least as well as - and often better than - both of its constituent losses on variety of tasks. In doing so we also provide an empirical comparison of the efficacy of probabilistic and margin based approaches to multiclass and structured prediction and the effects of label dominance on these results.Comment: 16 pages, 3 figure

    A Hybrid Loss for Multiclass and Structured Prediction

    Full text link
    We propose a novel hybrid loss for multiclass and structured prediction problems that is a convex combination of a log loss for Conditional Random Fields (CRFs) and a multiclass hinge loss for Support Vector Machines (SVMs). We provide a sufficient condition for when the hybrid loss is Fisher consistent for classification. This condition depends on a measure of dominance between labels--specifically, the gap between the probabilities of the best label and the second best label. We also prove Fisher consistency is necessary for parametric consistency when learning models such as CRFs. We demonstrate empirically that the hybrid loss typically performs least as well as--and often better than--both of its constituent losses on a variety of tasks, such as human action recognition. In doing so we also provide an empirical comparison of the efficacy of probabilistic and margin based approaches to multiclass and structured prediction.Comment: 12 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1009.334

    Complementary-Label Learning for Arbitrary Losses and Models

    Full text link
    In contrast to the standard classification paradigm where the true class is given to each training pattern, complementary-label learning only uses training patterns each equipped with a complementary label, which only specifies one of the classes that the pattern does not belong to. The goal of this paper is to derive a novel framework of complementary-label learning with an unbiased estimator of the classification risk, for arbitrary losses and models---all existing methods have failed to achieve this goal. Not only is this beneficial for the learning stage, it also makes model/hyper-parameter selection (through cross-validation) possible without the need of any ordinarily labeled validation data, while using any linear/non-linear models or convex/non-convex loss functions. We further improve the risk estimator by a non-negative correction and gradient ascent trick, and demonstrate its superiority through experiments.Comment: accepted to ICML 2019 (Added errata on Nov. 19, 2019

    Boosting in the presence of outliers: adaptive classification with non-convex loss functions

    Full text link
    This paper examines the role and efficiency of the non-convex loss functions for binary classification problems. In particular, we investigate how to design a simple and effective boosting algorithm that is robust to the outliers in the data. The analysis of the role of a particular non-convex loss for prediction accuracy varies depending on the diminishing tail properties of the gradient of the loss -- the ability of the loss to efficiently adapt to the outlying data, the local convex properties of the loss and the proportion of the contaminated data. In order to use these properties efficiently, we propose a new family of non-convex losses named γ\gamma-robust losses. Moreover, we present a new boosting framework, {\it Arch Boost}, designed for augmenting the existing work such that its corresponding classification algorithm is significantly more adaptable to the unknown data contamination. Along with the Arch Boosting framework, the non-convex losses lead to the new class of boosting algorithms, named adaptive, robust, boosting (ARB). Furthermore, we present theoretical examples that demonstrate the robustness properties of the proposed algorithms. In particular, we develop a new breakdown point analysis and a new influence function analysis that demonstrate gains in robustness. Moreover, we present new theoretical results, based only on local curvatures, which may be used to establish statistical and optimization properties of the proposed Arch boosting algorithms with highly non-convex loss functions. Extensive numerical calculations are used to illustrate these theoretical properties and reveal advantages over the existing boosting methods when data exhibits a number of outliers

    Collaborative Learning for Weakly Supervised Object Detection

    Full text link
    Weakly supervised object detection has recently received much attention, since it only requires image-level labels instead of the bounding-box labels consumed in strongly supervised learning. Nevertheless, the save in labeling expense is usually at the cost of model accuracy. In this paper, we propose a simple but effective weakly supervised collaborative learning framework to resolve this problem, which trains a weakly supervised learner and a strongly supervised learner jointly by enforcing partial feature sharing and prediction consistency. For object detection, taking WSDDN-like architecture as weakly supervised detector sub-network and Faster-RCNN-like architecture as strongly supervised detector sub-network, we propose an end-to-end Weakly Supervised Collaborative Detection Network. As there is no strong supervision available to train the Faster-RCNN-like sub-network, a new prediction consistency loss is defined to enforce consistency of predictions between the two sub-networks as well as within the Faster-RCNN-like sub-networks. At the same time, the two detectors are designed to partially share features to further guarantee the model consistency at perceptual level. Extensive experiments on PASCAL VOC 2007 and 2012 data sets have demonstrated the effectiveness of the proposed framework

    CyCADA: Cycle-Consistent Adversarial Domain Adaptation

    Full text link
    Domain adaptation is critical for success in new, unseen environments. Adversarial adaptation models applied in feature spaces discover domain invariant representations, but are difficult to visualize and sometimes fail to capture pixel-level and low-level domain shifts. Recent work has shown that generative adversarial networks combined with cycle-consistency constraints are surprisingly effective at mapping images between domains, even without the use of aligned image pairs. We propose a novel discriminatively-trained Cycle-Consistent Adversarial Domain Adaptation model. CyCADA adapts representations at both the pixel-level and feature-level, enforces cycle-consistency while leveraging a task loss, and does not require aligned pairs. Our model can be applied in a variety of visual recognition and prediction settings. We show new state-of-the-art results across multiple adaptation tasks, including digit classification and semantic segmentation of road scenes demonstrating transfer from synthetic to real world domains

    Consistent Multilabel Ranking through Univariate Losses

    Full text link
    We consider the problem of rank loss minimization in the setting of multilabel classification, which is usually tackled by means of convex surrogate losses defined on pairs of labels. Very recently, this approach was put into question by a negative result showing that commonly used pairwise surrogate losses, such as exponential and logistic losses, are inconsistent. In this paper, we show a positive result which is arguably surprising in light of the previous one: the simpler univariate variants of exponential and logistic surrogates (i.e., defined on single labels) are consistent for rank loss minimization. Instead of directly proving convergence, we give a much stronger result by deriving regret bounds and convergence rates. The proposed losses suggest efficient and scalable algorithms, which are tested experimentally.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Robust and Efficient Boosting Method using the Conditional Risk

    Full text link
    Well-known for its simplicity and effectiveness in classification, AdaBoost, however, suffers from overfitting when class-conditional distributions have significant overlap. Moreover, it is very sensitive to noise that appears in the labels. This article tackles the above limitations simultaneously via optimizing a modified loss function (i.e., the conditional risk). The proposed approach has the following two advantages. (1) It is able to directly take into account label uncertainty with an associated label confidence. (2) It introduces a "trustworthiness" measure on training samples via the Bayesian risk rule, and hence the resulting classifier tends to have finite sample performance that is superior to that of the original AdaBoost when there is a large overlap between class conditional distributions. Theoretical properties of the proposed method are investigated. Extensive experimental results using synthetic data and real-world data sets from UCI machine learning repository are provided. The empirical study shows the high competitiveness of the proposed method in predication accuracy and robustness when compared with the original AdaBoost and several existing robust AdaBoost algorithms.Comment: 14 Pages, 2 figures and 5 table

    Fast Weakly Supervised Action Segmentation Using Mutual Consistency

    Full text link
    Action segmentation is the task of predicting the actions for each frame of a video. As obtaining the full annotation of videos for action segmentation is expensive, weakly supervised approaches that can learn only from transcripts are appealing. In this paper, we propose a novel end-to-end approach for weakly supervised action segmentation based on a two-branch neural network. The two branches of our network predict two redundant but different representations for action segmentation and we propose a novel mutual consistency (MuCon) loss that enforces the consistency of the two redundant representations. Using the MuCon loss together with a loss for transcript prediction, our proposed approach achieves the accuracy of state-of-the-art approaches while being 1414 times faster to train and 2020 times faster during inference. The MuCon loss proves beneficial even in the fully supervised setting.Comment: Accepted for publication at TPAMI (IEEE Transactions on Pattern Analysis and Machine Intelligence) in 2021. First two authors contributed equall

    Temporal Cycle-Consistency Learning

    Full text link
    We introduce a self-supervised representation learning method based on the task of temporal alignment between videos. The method trains a network using temporal cycle consistency (TCC), a differentiable cycle-consistency loss that can be used to find correspondences across time in multiple videos. The resulting per-frame embeddings can be used to align videos by simply matching frames using the nearest-neighbors in the learned embedding space. To evaluate the power of the embeddings, we densely label the Pouring and Penn Action video datasets for action phases. We show that (i) the learned embeddings enable few-shot classification of these action phases, significantly reducing the supervised training requirements; and (ii) TCC is complementary to other methods of self-supervised learning in videos, such as Shuffle and Learn and Time-Contrastive Networks. The embeddings are also used for a number of applications based on alignment (dense temporal correspondence) between video pairs, including transfer of metadata of synchronized modalities between videos (sounds, temporal semantic labels), synchronized playback of multiple videos, and anomaly detection. Project webpage: https://sites.google.com/view/temporal-cycle-consistency .Comment: Accepted at CVPR 2019. Project webpage: https://sites.google.com/view/temporal-cycle-consistenc
    • …
    corecore