30,436 research outputs found

    Consensus on Nonlinear Spaces

    Full text link
    peer reviewedConsensus problems have attracted significant attention in the control community over the last decade. They act as a rich source of new mathematical problems pertaining to the growing field of cooperative and distributed control. This paper is an introduction to consensus problems whose underlying state-space is not a linear space, but instead a highly symmetric nonlinear space such as the circle and other relevant generalizations. A geometric approach is shown to highlight the connection between several fundamental models of consensus, synchronization, and coordination, to raise significant global convergence issues not present in linear models, and to be relevant for a number of engineering applications, including the design of planar or spatial coordinated motions

    Distributed Adaptive Learning with Multiple Kernels in Diffusion Networks

    Full text link
    We propose an adaptive scheme for distributed learning of nonlinear functions by a network of nodes. The proposed algorithm consists of a local adaptation stage utilizing multiple kernels with projections onto hyperslabs and a diffusion stage to achieve consensus on the estimates over the whole network. Multiple kernels are incorporated to enhance the approximation of functions with several high and low frequency components common in practical scenarios. We provide a thorough convergence analysis of the proposed scheme based on the metric of the Cartesian product of multiple reproducing kernel Hilbert spaces. To this end, we introduce a modified consensus matrix considering this specific metric and prove its equivalence to the ordinary consensus matrix. Besides, the use of hyperslabs enables a significant reduction of the computational demand with only a minor loss in the performance. Numerical evaluations with synthetic and real data are conducted showing the efficacy of the proposed algorithm compared to the state of the art schemes.Comment: Double-column 15 pages, 10 figures, submitted to IEEE Trans. Signal Processin

    Hypergraph conditions for the solvability of the ergodic equation for zero-sum games

    Full text link
    The ergodic equation is a basic tool in the study of mean-payoff stochastic games. Its solvability entails that the mean payoff is independent of the initial state. Moreover, optimal stationary strategies are readily obtained from its solution. In this paper, we give a general sufficient condition for the solvability of the ergodic equation, for a game with finite state space but arbitrary action spaces. This condition involves a pair of directed hypergraphs depending only on the ``growth at infinity'' of the Shapley operator of the game. This refines a recent result of the authors which only applied to games with bounded payments, as well as earlier nonlinear fixed point results for order preserving maps, involving graph conditions.Comment: 6 pages, 1 figure, to appear in Proc. 54th IEEE Conference on Decision and Control (CDC 2015
    • …
    corecore