3 research outputs found

    Containment Control of Multiagent Systems with Multiple Leaders and Noisy Measurements

    Get PDF
    We consider the distributed containment control of multiagent systems with multiple stationary leaders and noisy measurements. A stochastic approximation type and consensus-like algorithm is proposed to solve the containment control problem. We provide conditions under which all the followers can converge both almost surely and in mean square to the stationary convex hull spanned by the leaders. Simulation results are provided to illustrate the theoretical results

    A Continuum Framework and Homogeneous Map Based Algorithms for Formation Control of Multi Agent Systems

    Get PDF
    In this dissertation, new algorithms for formation control of multi agent systems (MAS) based on continuum mechanics principles will be suggested. For this purpose, agents of the MAS are considered as particles in a continuum, evolving in R^n, whose desired configuration is required to satisfy an admissible deformation function. Considered is a specific class of mappings that are called homogenous where the Jacobian of the mapping is only a function of time and is not spatially varying. The primary objectives of this dissertation are to develop the necessary theory and its validation on a mobile-agent based swarm test bed that includes two primary tasks: 1) homogenous transformation of MAS and 2) deployment of a random distribution of agents on a desired configuration. Developed will be a framework based on homogenous transformations for the evolution of an MAS in an n-dimensional space (n=1,2, and 3), under1) no inter-agent communication (predefined motion plan), 2) local inter-agent communication, and 3) intelligent perception by agents. In this dissertation, different communication protocols for MAS evolution that are based on certain special features of a homogenous transformation will be developed. It is also aimed to deal with the robustness of tracking of a desired motion by an MAS evolving in R^n. Furthermore, the effect of communication delays in an MAS evolving under consensus algorithms or homogenous maps is investigated. In this regard, the maximum allowable communication delay for MAS evolution is formulated on the basis of eigen-analysis.Ph.D., Mechanical Engineering and Mechanics -- Drexel University, 201
    corecore