2,394 research outputs found

    Towards Secure Blockchain-enabled Internet of Vehicles: Optimizing Consensus Management Using Reputation and Contract Theory

    Full text link
    In Internet of Vehicles (IoV), data sharing among vehicles is essential to improve driving safety and enhance vehicular services. To ensure data sharing security and traceability, highefficiency Delegated Proof-of-Stake consensus scheme as a hard security solution is utilized to establish blockchain-enabled IoV (BIoV). However, as miners are selected from miner candidates by stake-based voting, it is difficult to defend against voting collusion between the candidates and compromised high-stake vehicles, which introduces serious security challenges to the BIoV. To address such challenges, we propose a soft security enhancement solution including two stages: (i) miner selection and (ii) block verification. In the first stage, a reputation-based voting scheme for the blockchain is proposed to ensure secure miner selection. This scheme evaluates candidates' reputation by using both historical interactions and recommended opinions from other vehicles. The candidates with high reputation are selected to be active miners and standby miners. In the second stage, to prevent internal collusion among the active miners, a newly generated block is further verified and audited by the standby miners. To incentivize the standby miners to participate in block verification, we formulate interactions between the active miners and the standby miners by using contract theory, which takes block verification security and delay into consideration. Numerical results based on a real-world dataset indicate that our schemes are secure and efficient for data sharing in BIoV.Comment: 12 pages, submitted for possible journal publicatio

    When Mobile Blockchain Meets Edge Computing

    Full text link
    Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications, e.g., finance, healthcare, and logistics, its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data, i.e., a block, to the blockchain. Solving the proof-of-work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then, we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin

    Blockchain-Based and Fuzzy Logic-Enabled False Data Discovery for the Intelligent Autonomous Vehicular System

    Full text link
    Since the beginning of this decade, several incidents report that false data injection attacks targeting intelligent connected vehicles cause huge industrial damage and loss of lives. Data Theft, Flooding, Fuzzing, Hijacking, Malware Spoofing and Advanced Persistent Threats have been immensely growing attack that leads to end-user conflict by abolishing trust on autonomous vehicle. Looking after those sensitive data that contributes to measure the localisation factors of the vehicle, conventional centralised techniques can be misused to update the legitimate vehicular status maliciously. As investigated, the existing centralized false data detection approach based on state and likelihood estimation has a reprehensible trade-off in terms of accuracy, trust, cost, and efficiency. Blockchain with Fuzzy-logic Intelligence has shown its potential to solve localisation issues, trust and false data detection challenges encountered by today's autonomous vehicular system. The proposed Blockchain-based fuzzy solution demonstrates a novel false data detection and reputation preservation technique. The illustrated proposed model filters false and anomalous data based on the vehicles' rules and behaviours. Besides improving the detection accuracy and eliminating the single point of failure, the contributions include appropriating fuzzy AI functions within the Road-side Unit node before authorizing status data by a Blockchain network. Finally, thorough experimental evaluation validates the effectiveness of the proposed model.Comment: 11 pages, 11 figures, 4 tables AsiaCCS conference 202
    • …
    corecore