116 research outputs found

    Estado y prioridades de conservación de los anfibios del departamento del Quindío, Colombia

    Get PDF
    stat i prioritats de conservació dels amfibis del departament del Quindío, Colòmbia En aquest article presentem una avaluació de l’estat i les prioritats de conservació dels amfibis al Quindío amb l’objectiu de proposar accions per conservar-los. Vam generar una llista d’espècies d’amfibis del departament, vam modelar la distribució potencial de les espècies amenaçades amb l’algoritme de màxima entropia de MaxEnt i en vam avaluar la representativitat en el Sistema Departamental d’Àrees Protegides del Quindío (SIDAPQ). A més a més, vam prioritzar les àrees per a la conservació dels amfibis amb l’algoritme ILV4 adjacency de ConsNet. Vam registrar 45 espècies d’amfibis, el 24,4% de les quals es troben incloses en alguna categoria d’amenaça de la Llista Vermella de la UICN. Els amfibis amenaçats van presentar una distribució i uns registres superiors al 50% dins del SIDAPQ. Les àrees prioritzades per assolir objectius de representativitat del 10, 20 i 30% de la distribució dels amfibis estan totalment fragmentades i només tenen el 30% de la distribució prioritzada al SIDAPQ. Davant d’aquest escenari, proposem una estratègia de conservació de caràcter paisatgístic que inclogui els agroecosistemes, tractant de mantenir-ne l’heterogeneïtat i eliminant-ne o disminuint-ne els factors d’amenaça.Conservation status and priorities of amphibians from the Quindío Department, Colombia We reviewed the conservation status and priorities for amphibians from the Quindío region of Colombia, with the purpose of proposing conservation actions. We modeled the potential distribution of threatened species using the maximum entropy algorithm in MaxEnt and evaluated representability in the Departmental System of Protected Areas for Quindío (Spanish acronym: SIDAPQ). We prioritized areas for amphibian conservation using the algorithm ILV4 adjacency in ConsNet. We recorded 45 species, 24.4% of which are included in threatened categories on the IUCN Red List. Over 50% of the distribution and records of the threatened amphibians occurred inside the SIDAPQ. Prioritized areas to achieve representation goals of 10, 20 and 30% of amphibian distribution are highly fragmented and have only approximately 30% of prioritized distribution in the SIDAPQ. Considering this scenario we propose a conservation strategy on the landscape level that includes agroecosystems, maintaining their heterogeneity and eliminating or mitigating threat factors.En este artículo presentamos una evaluación del estado y prioridades de conservación de los anfibios en el Quindío con el objetivo de proponer acciones para su conservación. Generamos una lista de especies de anfibios del departamento, modelamos la distribución potencial de las especies amenazadas con el algoritmo de máxima entropía de MaxEnt y evaluamos su representatividad en el Sistema Departamental de Áreas Protegidas del Quindío (SIDAPQ). Además, priorizamos las áreas para la conservación de los anfibios con el algoritmo ILV4 adjacency de ConsNet. Registramos 45 especies de anfibios, el 24,4% de las cuales se encuentran incluidas en alguna categoría de amenaza de la Lista Roja de la UICN. Los anfibios amenazados presentaron una distribución y unos registros superiores al 50% dentro del SIDAPQ. Las áreas priorizadas para alcanzar los objetivos de representatividad del 10, 20 y 30% de la distribución de los anfibios están altamente fragmentadas y sólo tienen el 30% de la distribución priorizada en el SIDAPQ. Ante este escenario, proponemos una estrategia de conservación de carácter paisajístico que incluya los agroecosistemas, tratando de mantener su heterogeneidad y eliminando o mitigando los factores de amenaza

    A Survey of e-Biodiversity: Concepts, Practices, and Challenges

    Full text link
    The unprecedented size of the human population, along with its associated economic activities, have an ever increasing impact on global environments. Across the world, countries are concerned about the growing resource consumption and the capacity of ecosystems to provide them. To effectively conserve biodiversity, it is essential to make indicators and knowledge openly available to decision-makers in ways that they can effectively use them. The development and deployment of mechanisms to produce these indicators depend on having access to trustworthy data from field surveys and automated sensors, biological collections, molecular data, and historic academic literature. The transformation of this raw data into synthesized information that is fit for use requires going through many refinement steps. The methodologies and techniques used to manage and analyze this data comprise an area often called biodiversity informatics (or e-Biodiversity). Biodiversity data follows a life cycle consisting of planning, collection, certification, description, preservation, discovery, integration, and analysis. Researchers, whether producers or consumers of biodiversity data, will likely perform activities related to at least one of these steps. This article explores each stage of the life cycle of biodiversity data, discussing its methodologies, tools, and challenges

    Biodiversity protection prioritisation: a 25-year review

    Get PDF
    There are insufficient resources available globally, nationally and in many regions, to conserve all species, habitats and ecosystems. Prioritisation of targets or actions is a rational response to resource scarcity. Prioritisation can be directed at areas for reservation, species, habitats or ecosystems for management, and threat management actions. The scale at which prioritisation is applied is a fundamental decision, and the range includes global, national, regional and patch. Choice of scale influences availability of data and methods available for prioritisation. Since 1986 availability of data, computing power and expertise available have all improved globally and in many countries. Approaches to prioritisation have evolved during the past 25 years as researchers from several disciplines, including biology, ecology, decision sciences, mathematics and economics, have sought ways to achieve greater output from the resources available for biodiversity conservation. This review surveys the literature and groups prioritisation approaches into the following four categories: reserves and reserve selection, prescriptive costed biodiversity prioritisation, ranked costed biodiversity projects and contracted costed conservation actions. A concluding section considers the limitations of current prioritisation approaches and points to areas for further development

    Religion´s role in Development, Ecology & Climate Change : An Islamic perspective

    Get PDF
    Islam, Development, Ecology,Non peer reviewe

    Opuntia in México: Identifying Priority Areas for Conserving Biodiversity in a Multi-Use Landscape

    Get PDF
    BACKGROUND: México is one of the world's centers of species diversity (richness) for Opuntia cacti. Yet, in spite of their economic and ecological importance, Opuntia species remain poorly studied and protected in México. Many of the species are sparsely but widely distributed across the landscape and are subject to a variety of human uses, so devising implementable conservation plans for them presents formidable difficulties. Multi-criteria analysis can be used to design a spatially coherent conservation area network while permitting sustainable human usage. METHODS AND FINDINGS: Species distribution models were created for 60 Opuntia species using MaxEnt. Targets of representation within conservation area networks were assigned at 100% for the geographically rarest species and 10% for the most common ones. Three different conservation plans were developed to represent the species within these networks using total area, shape, and connectivity as relevant criteria. Multi-criteria analysis and a metaheuristic adaptive tabu search algorithm were used to search for optimal solutions. The plans were built on the existing protected areas of México and prioritized additional areas for management for the persistence of Opuntia species. All plans required around one-third of México's total area to be prioritized for attention for Opuntia conservation, underscoring the implausibility of Opuntia conservation through traditional land reservation. Tabu search turned out to be both computationally tractable and easily implementable for search problems of this kind. CONCLUSIONS: Opuntia conservation in México require the management of large areas of land for multiple uses. The multi-criteria analyses identified priority areas and organized them in large contiguous blocks that can be effectively managed. A high level of connectivity was established among the prioritized areas resulting in the enhancement of possible modes of plant dispersal as well as only a small number of blocks that would be recommended for conservation management

    A systematic approach towards the identification and protection of vulnerable marine ecosystems

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Policy 49 (2014):146-154, doi:10.1016/j.marpol.2013.11.017.The United Nations General Assembly in 2006 and 2009 adopted resolutions that call for the identification and protection of vulnerable marine ecosystems (VMEs) from significant adverse impacts of bottom fishing. While general criteria have been produced, there are no guidelines or protocols that elaborate on the process from initial identification through to the protection of VMEs. Here, based upon an expert review of existing practices, a 10-step framework is proposed: 1) Comparatively assess potential VME indicator taxa and habitats in a region; 2) determine VME thresholds; 3) consider areas already known for their ecological importance; 4) compile information on the distributions of likely VME taxa and habitats, as well as related environmental data; 5) develop predictive distribution models for VME indicator taxa and habitats; 6) compile known or likely fishing impacts; 7) produce a predicted VME naturalness distribution (areas of low cumulative impacts); 8) identify areas of higher value to user groups; 9) conduct management strategy evaluations to produce trade-off scenarios; 10) review and re-iterate, until spatial management scenarios are developed that fulfil international obligations and regional conservation and management objectives. To date, regional progress has been piecemeal and incremental. The proposed 10-step framework combines these various experiences into a systematic approach.The New Zealand Ministry of Science and Innovation (now known as the Ministry of Business, Innovation and Employment) provided funding for the worksho

    Red de áreas prioritarias para la conservación de la biodiversidad del Eje Volcánico Transmexicano analizando su riqueza florística y variabilidad climática

    Get PDF
    El Eje Volcánico Transversal de México (EVT) es la zona donde se sobreponen las regiones Neártica y Neotropical, lo que ha contribuido para que ésta sea una de las zonas donde se concentra la mayor riqueza biológica del país. Con base en la riqueza florística (4 055 especies de plantas con semillas) de esta zona, los tipos de vegetación y variabilidad climática que la componen, se definen escenarios para definir redes de áreas prioritarias de conservación. Haciendo análisis de complementariedad metaheurísticos y considerando tres porcentajes (5%, 10% y 25%) de representación de atributos biológicos y ambientales, se definen nueve escenarios que sirven como base para delimitar áreas de conservación en el centro de México. Los escenarios definidos se comparan y analizan con las Áreas Naturales Protegidas y las Regiones Terrestres Prioritarias que han sido delimitadas dentro de la zona del Eje Volcánico Transversal de México. Se encontró que algunas zonas con mayor riqueza no se incluyen en ninguna de las áreas de conservación, lo que sugiere que es necesario reevaluar la función que estas áreas desempeñan en la protección de la biodiversidad a mediano y largo plazos

    Aprendizado profundo para análise do cérebro em imagens de ressonância magnética

    Get PDF
    Orientadores: Roberto de Alencar Lotufo, Sebastien Ourselin e Leticia RittnerDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação e University College LondonResumo: Redes neurais convolucionais (CNNs-Convolutional neural networks) são uma vertente do apredizado profundo que obtiveram muito sucesso quando aplicadas em várias análises em imagens de ressonância magnética (MR-magnetic resonance) do cérebro. As CNNs são métodos de aprendizagem de representação com várias camadas empilhadas compostas por uma operação de convolução seguida de uma ativação não linear e de camadas de agru- pamento. Nessas redes, cada camada gera uma representação mais alta e mais abstrata de uma determinada entrada, na qual os pesos das camadas convolucionais são aprendidos por um problema de otimização. Neste trabalho, tratamos dois problemas usando aborda- gens baseadas em aprendizagem profunda: remoção da calota craniana (SS) e tractografia. Primeiramente, propusemos um SS completo baseado em CNN treinado com o que nos referimos como máscaras de padrão de prata. A segmentação de tecido cerebral a partir de tecido não cerebral é um processo conhecido como extração da calota craniana ou re- moção de crânios. As máscaras de padrão de prata são geradas pela formação do consenso a partir de um conjunto de oito métodos de SS públicos, não baseados em aprendizagem profunda, usando o algoritmo Verdade Simultânea e Estimativa do Nível de Desempenho (STAPLE-Simultaneous Truth and Performance Level Estimation). Nossa abordagem al- cançou o desempenho do estado da arte, generalizou de forma otimizada, diminuiu a variabilidade inter / intra-avaliador e evitou a super-especialização da segmentação da CNN em relação a uma anotação manual específica. Em segundo lugar, investigamos uma solução de tractografia baseada em CNN para cirurgia de epilepsia. O principal objetivo desta análise foi estruturar uma linha de base para uma regressão baseada em aprendiza- gem profunda para prever as orientações da fibra da matéria branca. Tractografia é uma visualização das fibras ou tratos da substância branca; seu objetivo no planejamento pré- operatório é simplesmente identificar a posição de caminhos eloqüentes, como os tratos motor, sensorial e de linguagem, para reduzir o risco de danificar essas estruturas críticas. Realizamos uma análise em um único paciente e também uma análise entre 10 pacientes em uma abordagem de validação cruzada. Nossos resultados não foram ótimos, entretanto, as fibras preditas pelo algoritmo tenderam a ter um comprimento similar e convergiram para os locais médios do trato das fibras. Além disso, até onde sabemos, nosso método é a primeira abordagem que investiga CNNs para tractografia, e assim, nosso trabalho é uma base para este tópicoAbstract: Convolutional neural networks (CNNs) are one branch of deep learning that have per- formed successfully in many brain magnetic resonance (MR) imaging analysis. CNNs are representation-learning methods with stacked layers comprised of a convolution op- eration followed by a non-linear activation and pooling layers. In these networks, each layer outputs a higher and more abstract representation from a given input, in which the weights of the convolutional layers are learned by an optimization problem. In this work, we tackled two problems using deep-learning-based approaches: skull-stripping (SS) and tractography. We firstly proposed a full CNN-based SS trained with what we refer to as silver standard masks. Segmenting brain tissue from non-brain tissue is a process known as brain extraction or skull-stripping. Silver standard masks are generated by forming the consensus from a set of eight, public, non-deep-learning-based SS methods using the algo- rithm Simultaneous Truth and Performance Level Estimation (STAPLE). Our approach reached state-of-the-art performance, generalized optimally, decreased inter-/intra-rater variability, and avoided CNN segmentation overfitting towards one specific manual anno- tation. Secondly, we investigated a CNN-based tractography solution for epilepsy surgery. The main goal of this analysis was to structure a baseline for a deep-learning-based- regression to predict white matter fiber orientations. Tractography is a visualization of the white matter fibers or tracts; its goal in presurgical planing is simply to identify the position of eloquent pathways, such as the motor, sensory, and language tracts to reduce the risk of damaging these critical structures. We performed analysis cross-validation us- ing only in a single patient per time, and also, training with data from 10 patients for training the CNN. Our results were not optimal, however, the tracts tended to be of a similar length and converged to the mean fiber tract locations. Additionally, to the best of our knowledge, our method is the first approach that investigates CNNs for tractography, and thus, our work is a baseline for this topicMestradoEngenharia de ComputaçãoMestre em Engenharia Elétrica2016/18332-8, 2017/23747-5FAPES
    corecore