89 research outputs found

    On the stretch factor of the Theta-4 graph

    Get PDF
    In this paper we show that the \theta-graph with 4 cones has constant stretch factor, i.e., there is a path between any pair of vertices in this graph whose length is at most a constant times the Euclidean distance between that pair of vertices. This is the last \theta-graph for which it was not known whether its stretch factor was bounded

    Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition

    Get PDF
    A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is xx- and yy-monotone. Angle-monotone graphs are 2\sqrt 2-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-θ6\theta_6-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex ss to any vertex tt whose length is within 1+21 + \sqrt 2 times the Euclidean distance from ss to tt. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    The Price of Order

    Full text link
    We present tight bounds on the spanning ratio of a large family of ordered θ\theta-graphs. A θ\theta-graph partitions the plane around each vertex into mm disjoint cones, each having aperture θ=2π/m\theta = 2 \pi/m. An ordered θ\theta-graph is constructed by inserting the vertices one by one and connecting each vertex to the closest previously-inserted vertex in each cone. We show that for any integer k1k \geq 1, ordered θ\theta-graphs with 4k+44k + 4 cones have a tight spanning ratio of 1+2sin(θ/2)/(cos(θ/2)sin(θ/2))1 + 2 \sin(\theta/2) / (\cos(\theta/2) - \sin(\theta/2)). We also show that for any integer k2k \geq 2, ordered θ\theta-graphs with 4k+24k + 2 cones have a tight spanning ratio of 1/(12sin(θ/2))1 / (1 - 2 \sin(\theta/2)). We provide lower bounds for ordered θ\theta-graphs with 4k+34k + 3 and 4k+54k + 5 cones. For ordered θ\theta-graphs with 4k+24k + 2 and 4k+54k + 5 cones these lower bounds are strictly greater than the worst case spanning ratios of their unordered counterparts. These are the first results showing that ordered θ\theta-graphs have worse spanning ratios than unordered θ\theta-graphs. Finally, we show that, unlike their unordered counterparts, the ordered θ\theta-graphs with 4, 5, and 6 cones are not spanners

    Balanced Schnyder woods for planar triangulations: an experimental study with applications to graph drawing and graph separators

    Full text link
    In this work we consider balanced Schnyder woods for planar graphs, which are Schnyder woods where the number of incoming edges of each color at each vertex is balanced as much as possible. We provide a simple linear-time heuristic leading to obtain well balanced Schnyder woods in practice. As test applications we consider two important algorithmic problems: the computation of Schnyder drawings and of small cycle separators. While not being able to provide theoretical guarantees, our experimental results (on a wide collection of planar graphs) suggest that the use of balanced Schnyder woods leads to an improvement of the quality of the layout of Schnyder drawings, and provides an efficient tool for computing short and balanced cycle separators.Comment: Appears in the Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization (GD 2019

    An Infinite Class of Sparse-Yao Spanners

    Full text link
    We show that, for any integer k > 5, the Sparse-Yao graph YY_{6k} (also known as Yao-Yao) is a spanner with stretch factor 11.67. The stretch factor drops down to 4.75 for k > 7.Comment: 17 pages, 12 figure

    Comment résumer le plan

    Get PDF
    International audienceCet article concerne les graphes de recouvrement d'un ensemble fini de points du plan Euclidien. Un graphe de recouvrement HH est de facteur d'étirement tt pour un ensemble de points SS si, entre deux points quelconques de SS, le coût d'un plus court chemin dans HH est au plus tt fois leur distance Euclidenne. Les graphes de recouvrement d'étirement tt (ci-après nommés \emph{tt-spanneurs}) sont à la base de nombreux algorithmes de routage et de navigation dans le plan. Le graphe (ou triangulation) de Delaunay, le graphe de Gabriel, le graphe de Yao ou le Theta-graphe sont des exemples bien connus de tt-spanneurs. L'étirement tt et le degré maximum des spanneurs sont des paramètres important à minimiser pour l'optimisation des ressources. En même temps le caractère planaire des constructions se révèle essentiel dans les algorithmes de navigation. Nous présentons une série de résultats dans ce domaine, en particulier: \begin{itemize} \item Nous montrons que le graphe Θ6\Theta_6 (le Theta-graphe où k=6k=6 cônes d'angle Θk=2π/k\Theta_k = 2\pi/k par sommet sont utilisées) est l'union de deux spanneurs planaires d'étirement deux. En particulier, nous établissons que l'étirement maximum du graphe Θ6\Theta_6 est deux, ce qui est optimal. Des bornes supérieures sur l'étirement du graphe Θk\Theta_k n'étaient connues que lorsque k>6k > 6. Pour k=7k=7, la meilleure borne connue est d'environ 7.567.56 et pour k=6k=6 il était ouvert de savoir si le graphe était un tt-spanneur pour une valeur constante de tt. \item Nous montrons que le graphe Θ6\Theta_6 contient comme sous-graphe couvrant un 33-spanneur planaire de degré maximum au plus~99. \item Finalement, en utilisant une variante du résultat précédant, nous montrons que le plan Euclidien possède un 66-spanneur planaire de degré maximum au plus~66. \end{itemize} La dernière construction, non décrite ici par manque de place, améliore une longue série de résultats sur le problème largement ouvert de déterminer la plus petite valeur δ\delta telle que tout ensemble du plan possède un spanneur planaire d'étirement constant et de degré maximum δ\delta. Le meilleur résultat en date montrait que 3δ143 \le \delta\le 14
    corecore