5 research outputs found

    Analysis of biomedical data with multilevel glyphs

    Get PDF
    BACKGROUND: This paper presents multilevel data glyphs optimized for the interactive knowledge discovery and visualization of large biomedical data sets. Data glyphs are three- dimensional objects defined by multiple levels of geometric descriptions (levels of detail) combined with a mapping of data attributes to graphical elements and methods, which specify their spatial position. METHODS: In the data mapping phase, which is done by a biomedical expert, meta information about the data attributes (scale, number of distinct values) are compared with the visual capabilities of the graphical elements in order to give a feedback to the user about the correctness of the variable mapping. The spatial arrangement of glyphs is done in a dimetric view, which leads to high data density, a simplified 3D navigation and avoids perspective distortion. RESULTS: We show the usage of data glyphs in the disease analyser a visual analytics application for personalized medicine and provide an outlook to a biomedical web visualization scenario. CONCLUSIONS: Data glyphs can be successfully applied in the disease analyser for the analysis of big medical data sets. Especially the automatic validation of the data mapping, selection of subgroups within histograms and the visual comparison of the value distributions were seen by experts as an important functionality

    Access, Handling and Visualization Tools for Multiple Data Types for Breast Cancer Decision Support

    Get PDF
    Breast cancer is the most commonly diagnosed cancer among U.S women, besides skin cancer. More than 1 in 4 cancers among women are breast cancer. And though death rates have been decreasing since 1990, about 40,170 women in the U.S. were expected to die in 2009 from breast cancer. The progress of molecular profiling, in the last decade has revolutionized the understanding of cancer, but also introduced more complexity with new data such as gene expression, copy number variation, mutations and DNA methylation. These new data open up the possibility of differential diagnosis, much more precise prognosis as well as prediction of therapy response than any of the diagnostic tools that are available in the current practice. Additionally, epidemiological databases store clinically relevant information on hundreds of thousands of patients. However, with the abundance of all this information, clinicians will need new tools to access and visualize such data and use the information gained to treat new patients. The general problem will be to access, filter and analyze the data and then visualize them in a clinical context. This data ranges from clinico-pathological information, to molecular profiles from highthroughput genomic measurements and imaging data. Furthermore, data from patient populations is aggregated on epidemiological level and can be found under numerous clinical studies
    corecore