8,156 research outputs found

    Connected k-hop clustering in ad hoc networks

    Get PDF
    2004-2005 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    An ACO Algorithm for Effective Cluster Head Selection

    Full text link
    This paper presents an effective algorithm for selecting cluster heads in mobile ad hoc networks using ant colony optimization. A cluster in an ad hoc network consists of a cluster head and cluster members which are at one hop away from the cluster head. The cluster head allocates the resources to its cluster members. Clustering in MANET is done to reduce the communication overhead and thereby increase the network performance. A MANET can have many clusters in it. This paper presents an algorithm which is a combination of the four main clustering schemes- the ID based clustering, connectivity based, probability based and the weighted approach. An Ant colony optimization based approach is used to minimize the number of clusters in MANET. This can also be considered as a minimum dominating set problem in graph theory. The algorithm considers various parameters like the number of nodes, the transmission range etc. Experimental results show that the proposed algorithm is an effective methodology for finding out the minimum number of cluster heads.Comment: 7 pages, 5 figures, International Journal of Advances in Information Technology (JAIT); ISSN: 1798-2340; Academy Publishers, Finlan

    Small Worlds: Strong Clustering in Wireless Networks

    Full text link
    Small-worlds represent efficient communication networks that obey two distinguishing characteristics: a high clustering coefficient together with a small characteristic path length. This paper focuses on an interesting paradox, that removing links in a network can increase the overall clustering coefficient. Reckful Roaming, as introduced in this paper, is a 2-localized algorithm that takes advantage of this paradox in order to selectively remove superfluous links, this way optimizing the clustering coefficient while still retaining a sufficiently small characteristic path length.Comment: To appear in: 1st International Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks (LOCALGOS 2007), 2007, IEEE Compuster Society Pres

    Overlapping Multi-hop Clustering for Wireless Sensor Networks

    Full text link
    Clustering is a standard approach for achieving efficient and scalable performance in wireless sensor networks. Traditionally, clustering algorithms aim at generating a number of disjoint clusters that satisfy some criteria. In this paper, we formulate a novel clustering problem that aims at generating overlapping multi-hop clusters. Overlapping clusters are useful in many sensor network applications, including inter-cluster routing, node localization, and time synchronization protocols. We also propose a randomized, distributed multi-hop clustering algorithm (KOCA) for solving the overlapping clustering problem. KOCA aims at generating connected overlapping clusters that cover the entire sensor network with a specific average overlapping degree. Through analysis and simulation experiments we show how to select the different values of the parameters to achieve the clustering process objectives. Moreover, the results show that KOCA produces approximately equal-sized clusters, which allows distributing the load evenly over different clusters. In addition, KOCA is scalable; the clustering formation terminates in a constant time regardless of the network size

    Localized Support for Injection Point Election in Hybrid Networks

    Get PDF
    Ad-hoc networks, a promising trend in wireless technology, fail to work properly in a global setting. In most cases, self-organization and cost-free local communication cannot compensate the need for being connected, gathering urgent information just-in-time. Equipping mobile devices additionally with GSM or UMTS adapters in order to communicate with arbitrary remote devices or even a fixed network infrastructure provides an opportunity. Devices that operate as intermediate nodes between the ad-hoc network and a reliable backbone network are potential injection points. They allow disseminating received information within the local neighborhood. The effectiveness of different devices to serve as injection point differs substantially. For practical reasons the determination of injection points should be done locally, within the ad-hoc network partitions. We analyze different localized algorithms using at most 2-hop neighboring information. Results show that devices selected this way spread information more efficiently through the ad-hoc network. Our results can also be applied in order to support the election process for clusterheads in the field of clustering mechanisms.Comment: The Sixth International Conference on Networking (ICN 2007
    corecore