6,038 research outputs found

    Bio-Inspired Multi-Layer Spiking Neural Network Extracts Discriminative Features from Speech Signals

    Full text link
    Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative features from speech signals, which can subsequently be used in a classifier. The architecture consists of a spiking convolutional/pooling layer followed by a fully connected spiking layer for feature discovery. The convolutional layer of leaky, integrate-and-fire (LIF) neurons represents primary acoustic features. The fully connected layer is equipped with a probabilistic spike-timing-dependent plasticity learning rule. This layer represents the discriminative features through probabilistic, LIF neurons. To assess the discriminative power of the learned features, they are used in a hidden Markov model (HMM) for spoken digit recognition. The experimental results show performance above 96% that compares favorably with popular statistical feature extraction methods. Our results provide a novel demonstration of unsupervised feature acquisition in an SNN

    Integrating user-centred design in the development of a silent speech interface based on permanent magnetic articulography

    Get PDF
    Abstract: A new wearable silent speech interface (SSI) based on Permanent Magnetic Articulography (PMA) was developed with the involvement of end users in the design process. Hence, desirable features such as appearance, port-ability, ease of use and light weight were integrated into the prototype. The aim of this paper is to address the challenges faced and the design considerations addressed during the development. Evaluation on both hardware and speech recognition performances are presented here. The new prototype shows a com-parable performance with its predecessor in terms of speech recognition accuracy (i.e. ~95% of word accuracy and ~75% of sequence accuracy), but significantly improved appearance, portability and hardware features in terms of min-iaturization and cost

    Improving neural networks by preventing co-adaptation of feature detectors

    Full text link
    When a large feedforward neural network is trained on a small training set, it typically performs poorly on held-out test data. This "overfitting" is greatly reduced by randomly omitting half of the feature detectors on each training case. This prevents complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors. Instead, each neuron learns to detect a feature that is generally helpful for producing the correct answer given the combinatorially large variety of internal contexts in which it must operate. Random "dropout" gives big improvements on many benchmark tasks and sets new records for speech and object recognition

    Detection of Mines in Acoustic Images using Higher Order Spectral Features

    Get PDF
    A new pattern-recognition algorithm detects approximately 90% of the mines hidden in the Coastal Systems Station Sonar0, 1, and 3 databases of cluttered acoustic images, with about 10% false alarms. Similar to other approaches, the algorithm presented here includes processing the images with an adaptive Wiener filter (the degree of smoothing depends on the signal strength in a local neighborhood) to remove noise without destroying the structural information in the mine shapes, followed by a two-dimensional FIR filter designed to suppress noise and clutter, while enhancing the target signature. A double peak pattern is produced as the FIR filter passes over mine highlight and shadow regions. Although the location, size, and orientation of this pattern within a region of the image can vary, features derived from higher order spectra (HOS) are invariant to translation, rotation, and scaling, while capturing the spatial correlations of mine-like objects. Classification accuracy is improved by combining features based on geometrical properties of the filter output with features based on HOS. The highest accuracy is obtained by fusing classification based on bispectral features with classification based on trispectral features

    Far-field subwavelength acoustic imaging by deep learning

    Full text link
    Seeing and recognizing an object whose size is much smaller than the illumination wavelength is a challenging task for an observer placed in the far field, due to the diffraction limit. Recent advances in near and far field microscopy have offered several ways to overcome this limitation; however, they often use invasive markers and require intricate equipment with complicated image post-processing. On the other hand, a simple marker-free solution for high-resolution imaging may be found by exploiting resonant metamaterial lenses that can convert the subwavelength image information contained in the near-field of the object to propagating field components that can reach the far field. Unfortunately, resonant metalenses are inevitably sensitive to absorption losses, which has so far largely hindered their practical applications. Here, we solve this vexing problem and show that this limitation can be turned into an advantage when metalenses are combined with deep learning techniques. We demonstrate that combining deep learning with lossy metalenses allows recognizing and imaging largely subwavelength features directly from the far field. Our acoustic learning experiment shows that, despite being thirty times smaller than the wavelength of sound, the fine details of images can be successfully reconstructed and recognized in the far field, which is crucially enabled by the presence of absorption. We envision applications in acoustic image analysis, feature detection, object classification, or as a novel noninvasive acoustic sensing tool in biomedical applications
    • …
    corecore