7,953 research outputs found

    A Real-Time Remote IDS Testbed for Connected Vehicles

    Full text link
    Connected vehicles are becoming commonplace. A constant connection between vehicles and a central server enables new features and services. This added connectivity raises the likelihood of exposure to attackers and risks unauthorized access. A possible countermeasure to this issue are intrusion detection systems (IDS), which aim at detecting these intrusions during or after their occurrence. The problem with IDS is the large variety of possible approaches with no sensible option for comparing them. Our contribution to this problem comprises the conceptualization and implementation of a testbed for an automotive real-world scenario. That amounts to a server-side IDS detecting intrusions into vehicles remotely. To verify the validity of our approach, we evaluate the testbed from multiple perspectives, including its fitness for purpose and the quality of the data it generates. Our evaluation shows that the testbed makes the effective assessment of various IDS possible. It solves multiple problems of existing approaches, including class imbalance. Additionally, it enables reproducibility and generating data of varying detection difficulties. This allows for comprehensive evaluation of real-time, remote IDS.Comment: Peer-reviewed version accepted for publication in the proceedings of the 34th ACM/SIGAPP Symposium On Applied Computing (SAC'19

    Road Friction Estimation for Connected Vehicles using Supervised Machine Learning

    Full text link
    In this paper, the problem of road friction prediction from a fleet of connected vehicles is investigated. A framework is proposed to predict the road friction level using both historical friction data from the connected cars and data from weather stations, and comparative results from different methods are presented. The problem is formulated as a classification task where the available data is used to train three machine learning models including logistic regression, support vector machine, and neural networks to predict the friction class (slippery or non-slippery) in the future for specific road segments. In addition to the friction values, which are measured by moving vehicles, additional parameters such as humidity, temperature, and rainfall are used to obtain a set of descriptive feature vectors as input to the classification methods. The proposed prediction models are evaluated for different prediction horizons (0 to 120 minutes in the future) where the evaluation shows that the neural networks method leads to more stable results in different conditions.Comment: Published at IV 201

    Open Platforms for Connected Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore