168,040 research outputs found
Intrusion Detection System for Platooning Connected Autonomous Vehicles
The deployment of Connected Autonomous Vehicles (CAVs) in Vehicular Ad Hoc Networks (VANETs) requires secure wireless communication in order to ensure reliable connectivity and safety. However, this wireless communication is vulnerable to a variety of cyber atacks such as spoofing or jamming attacks. In this paper, we describe an Intrusion Detection System (IDS) based on Machine Learning (ML) techniques designed to detect both spoofing and jamming attacks in a CAV environment. The IDS would reduce the risk of traffic disruption and accident caused as a result of cyber-attacks. The detection engine of the presented IDS is based on the ML algorithms Random Forest (RF), k-Nearest Neighbour (k-NN) and One-Class Support Vector Machine (OCSVM), as well as data fusion techniques in a cross-layer approach. To the best of the authors’ knowledge, the proposed IDS is the first in literature that uses a cross-layer approach to detect both spoofing and jamming attacks against the communication of connected vehicles platooning. The evaluation results of the implemented IDS present a high accuracy of over 90% using training datasets containing both known and unknown attacks
Implementation of connected and autonomous vehicles in cities could have neutral effects on the total travel time costs: modeling and analysis for a circular city
Autonomous vehicles promise to revolutionize the automobile market, although their implementation could take several decades in which both types of cars will coexist on the streets. We formulate a model for a circular city based on continuous approximations, considering demand
surfaces over the city. Numerical results from our model predict direct and indirect effects of connected and autonomous vehicles. Direct effects will be positive for our cities: (a) less street supply is needed to accommodate the traffic; (b) congestion levels decrease: travel costs may decrease by 30%. Some indirect effects will counterbalance these positive effects: (c) a decrease of 20% in the value of travel time can reduce the total cost by a third; (d) induced demand could be as high as 50%, bringing equivalent total costs in the future scenario; (e) the vehicle-kilometers traveled could also affect the future scenario; and (f) increases in city size and urban sprawl. As a conclusion, the implementation of autonomous vehicles could be neutral for the cities regarding travel time costs. City planning agencies still have to promote complementary modes such as active mobility (walking and bicycle), transit (public transportation), and shared mobility (shared autonomous vehicles and mobility as a service).Peer ReviewedPostprint (published version
An Agent-based Modelling Framework for Driving Policy Learning in Connected and Autonomous Vehicles
Due to the complexity of the natural world, a programmer cannot foresee all
possible situations, a connected and autonomous vehicle (CAV) will face during
its operation, and hence, CAVs will need to learn to make decisions
autonomously. Due to the sensing of its surroundings and information exchanged
with other vehicles and road infrastructure, a CAV will have access to large
amounts of useful data. While different control algorithms have been proposed
for CAVs, the benefits brought about by connectedness of autonomous vehicles to
other vehicles and to the infrastructure, and its implications on policy
learning has not been investigated in literature. This paper investigates a
data driven driving policy learning framework through an agent-based modelling
approaches. The contributions of the paper are two-fold. A dynamic programming
framework is proposed for in-vehicle policy learning with and without
connectivity to neighboring vehicles. The simulation results indicate that
while a CAV can learn to make autonomous decisions, vehicle-to-vehicle (V2V)
communication of information improves this capability. Furthermore, to overcome
the limitations of sensing in a CAV, the paper proposes a novel concept for
infrastructure-led policy learning and communication with autonomous vehicles.
In infrastructure-led policy learning, road-side infrastructure senses and
captures successful vehicle maneuvers and learns an optimal policy from those
temporal sequences, and when a vehicle approaches the road-side unit, the
policy is communicated to the CAV. Deep-imitation learning methodology is
proposed to develop such an infrastructure-led policy learning framework
- …
