1,176 research outputs found

    Symmetries of Riemann surfaces and magnetic monopoles

    Get PDF
    This thesis studies, broadly, the role of symmetry in elucidating structure. In particular, I investigate the role that automorphisms of algebraic curves play in three specific contexts; determining the orbits of theta characteristics, influencing the geometry of the highly-symmetric Bring’s curve, and in constructing magnetic monopole solutions. On theta characteristics, I show how to turn questions on the existence of invariant characteristics into questions of group cohomology, compute comprehensive tables of orbit decompositions for curves of genus 9 or less, and prove results on the existence of infinite families of curves with invariant characteristics. On Bring’s curve, I identify key points with geometric significance on the curve, completely determine the structure of the quotients by subgroups of automorphisms, finding new elliptic curves in the process, and identify the unique invariant theta characteristic on the curve. With respect to monopoles, I elucidate the role that the Hitchin conditions play in determining monopole spectral curves, the relation between these conditions and the automorphism group of the curve, and I develop the theory of computing Nahm data of symmetric monopoles. As such I classify all 3-monopoles whose Nahm data may be solved for in terms of elliptic functions

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    The Diophantine problem in Chevalley groups

    Full text link
    In this paper we study the Diophantine problem in Chevalley groups Gπ(Φ,R)G_\pi (\Phi,R), where Φ\Phi is an indecomposable root system of rank >1> 1, RR is an arbitrary commutative ring with 11. We establish a variant of double centralizer theorem for elementary unipotents xα(1)x_\alpha(1). This theorem is valid for arbitrary commutative rings with 11. The result is principle to show that any one-parametric subgroup XαX_\alpha, α∈Φ\alpha \in \Phi, is Diophantine in GG. Then we prove that the Diophantine problem in Gπ(Φ,R)G_\pi (\Phi,R) is polynomial time equivalent (more precisely, Karp equivalent) to the Diophantine problem in RR. This fact gives rise to a number of model-theoretic corollaries for specific types of rings.Comment: 44 page

    Deformation theory of G-valued pseudocharacters and symplectic determinant laws

    Get PDF
    We give an introduction to the theory of pseudorepresentations of Taylor, Rouquier, Chenevier and Lafforgue. We refer to Taylor’s and Rouquier’s pseudorepresentations as pseudocharacters. They are very closely related, the main difference being that Taylor’s pseudocharacters are defined for a group, where as Rouquier’s pseudocharacters are defined for algebras. Chenevier’s pseudorepresentations are so-called polynomial laws and will be called determinant laws. Lafforgue’s pseudorepresentations are a generalization of Taylor’s pseudocharacters to other reductive groups G, in that the corresponding notion of representation is that of a G-valued representation of a group. We refer to them as G-pseudocharacters. We survey the known comparison theorems, notably Emerson’s bijection between Chenevier’s determinant laws and Lafforgue’s GL(n)-pseudocharacters and the bijection with Taylor’s pseudocharacters away from small characteristics. We show, that duals of determinant laws exist and are compatible with duals of representations. Analogously, we obtain that tensor products of determinant laws exist and are compatible with tensor products of representations. Further the tensor product of Lafforgue’s pseudocharacters agrees with the tensor product of Taylor’s pseudocharacters. We generalize some of the results of [Che14] to general reductive groups, in particular we show that the (pseudo)deformation space of a continuous Lafforgue G-pseudocharacter of a topologically finitely generated profinite group Γ with values in a finite field (of characteristic p) is noetherian. We also show, that for specific groups G it is sufficient, that Γ satisfies Mazur’s condition Φ_p. One further goal of this thesis was to generalize parts of [BIP21] to other reductive groups. Let F/Qp be a finite extension. In order to carry this out for the symplectic groups Sp2d, we obtain a simple and concrete stratification of the special fiber of the pseudodeformation space of a residual G-pseudocharater of Gal(F) into obstructed subloci Xdec(Θ), Xpair(Θ), Xspcl(Θ) of dimension smaller than the expected dimension n(2n + 1)[F : Qp]. We also prove that Lafforgue’s G-pseudocharacters over algebraically closed fields for possibly nonconnected reductive groups G come from a semisimple representation. We introduce a formal scheme and a rigid analytic space of all G-pseudocharacters by a functorial description and show, building on our results of noetherianity of pseudodeformation spaces, that both are representable and admit a decomposition as a disjoint sum indexed by continuous pseudocharacters with values in a finite field up to conjugacy and Frobenius automorphisms. At last, in joint work with Mohamed Moakher, we give a new definition of determinant laws for symplectic groups, which is based on adding a ’Pfaffian polynomial law’ to a determinant law which is invariant under an involution. We prove the expected basic properties in that we show that symplectic determinant laws over algebraically closed fields are in bijection with conjugacy classes of semisimple representation and that Cayley-Hamilton lifts of absolutely irreducible symplectic determinant laws to henselian local rings are in bijection with conjugacy classes of representations. We also give a comparison map with Lafforgue’s pseudocharacters and show that it is an isomorphism over reduced rings

    Cohomology rings of extended powers and free infinite loop spaces

    Full text link
    We calculate mod-p cohomology of extended powers, and their group completions which are free infinite loop spaces. We consider the cohomology of all extended powers of a space together and identify a Hopf ring structure with divided powers within which cup product structure is more readily computable than on its own. We build on our previous calculations of cohomology of symmetric groups, which are the cohomology of extended powers of a point, the well-known calculation of homology, and new results on cohomology of symmetric groups with coefficients in the sign representation. We then use this framework to understand cohomology rings of related spaces such as infinite extended powers and free infinite loop spaces.Comment: 37 pages, 1 figur

    Automorphisms of del Pezzo surfaces in odd characteristic

    Full text link
    We complete the classification of automorphism groups of del Pezzo surfaces over algebraically closed fields of odd positive characteristic.Comment: 35 pages, comments welcom

    Induced log-concavity of equivariant matroid invariants

    Full text link
    Inspired by the notion of equivariant log-concavity, we introduce the concept of induced log-concavity for a sequence of representations of a finite group. For an equivariant matroid equipped with a symmetric group action or a finite general linear group action, we transform the problem of proving the induced log-concavity of matroid invariants to that of proving the Schur positivity of symmetric functions. We prove the induced log-concavity of the equivariant Kazhdan-Lusztig polynomials of qq-niform matroids equipped with the action of a finite general linear group, as well as that of the equivariant Kazhdan-Lusztig polynomials of uniform matroids equipped with the action of a symmetric group. As a consequence of the former, we obtain the log-concavity of Kazhdan-Lusztig polynomials of qq-niform matroids, thus providing further positive evidence for Elias, Proudfoot and Wakefield's log-concavity conjecture on the matroid Kazhdan-Lusztig polynomials. From the latter we obtain the log-concavity of Kazhdan-Lusztig polynomials of uniform matroids, which was recently proved by Xie and Zhang by using a computer algebra approach. We also establish the induced log-concavity of the equivariant characteristic polynomials and the equivariant inverse Kazhdan-Lusztig polynomials for qq-niform matroids and uniform matroids.Comment: 36 page

    Lie algebra actions on module categories for truncated shifted Yangians

    Full text link
    We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof's induction and restriction functors for Cherednik algebras, but their definition uses different tools. After this general definition, we focus on quiver gauge theories attached to a quiver Γ\Gamma. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra gΓ\mathfrak{g}_{\Gamma} on category O \mathcal O for these Coulomb branch algebras. When Γ \Gamma is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence. To establish this categorical action, we define a new class of "flavoured" KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.Comment: 66 pages, version 2: many corrections, improved treatment of GK dimension, 71 page
    • …
    corecore