4,979 research outputs found

    Zero-sum stopping games with asymmetric information

    Get PDF
    We study a model of two-player, zero-sum, stopping games with asymmetric information. We assume that the payoff depends on two continuous-time Markov chains (X, Y), where X is only observed by player 1 and Y only by player 2, implying that the players have access to stopping times with respect to different filtrations. We show the existence of a value in mixed stopping times and provide a variational characterization for the value as a function of the initial distribution of the Markov chains. We also prove a verification theorem for optimal stopping rules which allows to construct optimal stopping times. Finally we use our results to solve explicitly two generic examples

    Gradient-Based Estimation of Uncertain Parameters for Elliptic Partial Differential Equations

    Full text link
    This paper addresses the estimation of uncertain distributed diffusion coefficients in elliptic systems based on noisy measurements of the model output. We formulate the parameter identification problem as an infinite dimensional constrained optimization problem for which we establish existence of minimizers as well as first order necessary conditions. A spectral approximation of the uncertain observations allows us to estimate the infinite dimensional problem by a smooth, albeit high dimensional, deterministic optimization problem, the so-called finite noise problem in the space of functions with bounded mixed derivatives. We prove convergence of finite noise minimizers to the appropriate infinite dimensional ones, and devise a stochastic augmented Lagrangian method for locating these numerically. Lastly, we illustrate our method with three numerical examples

    Discrete mechanics and optimal control: An analysis

    Get PDF
    The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper is to directly discretize the variational description of the system's motion. The resulting optimization algorithm lets the discrete solution directly inherit characteristic structural properties from the continuous one like symmetries and integrals of the motion. We show that the DMOC (Discrete Mechanics and Optimal Control) approach is equivalent to a finite difference discretization of Hamilton's equations by a symplectic partitioned Runge-Kutta scheme and employ this fact in order to give a proof of convergence. The numerical performance of DMOC and its relationship to other existing optimal control methods are investigated

    Optimization with Sparsity-Inducing Penalties

    Get PDF
    Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate non-smooth norms. The goal of this paper is to present from a general perspective optimization tools and techniques dedicated to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent, reweighted 2\ell_2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provide an extensive set of experiments to compare various algorithms from a computational point of view

    Tangential Extremal Principles for Finite and Infinite Systems of Sets, II: Applications to Semi-infinite and Multiobjective Optimization

    Get PDF
    This paper contains selected applications of the new tangential extremal principles and related results developed in Part I to calculus rules for infinite intersections of sets and optimality conditions for problems of semi-infinite programming and multiobjective optimization with countable constraint
    corecore