1,376 research outputs found

    Comprehensive Survey Congestion Control Mechanisms in Wireless Sensor Networks:Comprehensive Survey

    Get PDF
    Wireless sensor network (WSN) occupies the top rank of the widely used networks for gathering different type of information from different averments. WSN has nodes with limited resources so congestion can cause a critical damage to such network where it limited resources can be exhausted. Many approaches has been proposed to deal with this problem. In this paper, different proposed algorithm for congestion detection, notification, mitigation and avoidance has been listed and discussed. These algorithms has been investigated by presenting its advantages and disadvantages. This paper provides a robust background for readers and researches for wireless sensor networks congestion control approaches. Keywords: WSN, Congestion Control, congestion mitigation, congestion detection, sink channel load, buffer load

    GCCP - NS: Grid based Congestion Control protocol with N-Sinks in a Wireless Sensor Network

    Get PDF
    Wireless Sensor Networks (WSN) have been a current trend in the research field and has many issues when there are multiple mobile sinks. Data dissemination gets critical as their locations have to be repeatedly updated and results in huge consumption of the restricted battery supply in sensor nodes. In this paper, we propose GCCP – NS, a grid based congestion control protocol with N –sinks that solves the data dissemination problem leading to congestion. We construct a dual level grid structure to trail the locations of all the source nodes that reports the information to the mobile sinks by monitoring the network in a hierarchical manner. As an added advantage, it aids in data dissemination based on query flooding from the mobile sinks using quorum based method within each cell in the grid and avoids congestion in an effective manner. Simulation results show that our proposed protocol outperforms the other schemes in terms of packet delivery ratio, energy expenditure and throughput

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Hop-by-hop Channel - Alert Routing to Congestion Control in Wireless Sensor Networks

    Get PDF
    One of the major challenges in wireless sensor networks (WSNs) research is to prevent traffic congestion without compromising with the energy of the sensor nodes. Network congestion leads to packet loss, throughput impairment, and energy waste. To address this issue in this paper, a distributed traffic-aware routing scheme with a capacity of adjusting the data transmission rate of nodes is proposed for multi-sink wireless sensor networks that effectively distribute traffic from the source to sink nodes. Our algorithm is designed through constructing a hybrid virtual gradient field using depth and normalized traffic loading to routing and providing a balance between optimal paths and possible congestion on routes toward those sinks. The simulation results indicate that the proposed solution can improve the utilization of network resources, reduce unnecessary packet retransmission, and significantly improve the performance of WSNs. Keywords: Wireless sensor networks; Traffic-aware; Routing; Data transmission rate; Congestion; Gradien
    • …
    corecore