14 research outputs found

    Contextual Similarity is More Valuable than Character Similarity: Curriculum Learning for Chinese Spell Checking

    Full text link
    Chinese Spell Checking (CSC) task aims to detect and correct Chinese spelling errors. In recent years, related researches focus on introducing the character similarity from confusion set to enhance the CSC models, ignoring the context of characters that contain richer information. To make better use of contextual similarity, we propose a simple yet effective curriculum learning framework for the CSC task. With the help of our designed model-agnostic framework, existing CSC models will be trained from easy to difficult as humans learn Chinese characters and achieve further performance improvements. Extensive experiments and detailed analyses on widely used SIGHAN datasets show that our method outperforms previous state-of-the-art methods

    A Frustratingly Easy Plug-and-Play Detection-and-Reasoning Module for Chinese Spelling Check

    Full text link
    In recent years, Chinese Spelling Check (CSC) has been greatly improved by designing task-specific pre-training methods or introducing auxiliary tasks, which mostly solve this task in an end-to-end fashion. In this paper, we propose to decompose the CSC workflow into detection, reasoning, and searching subtasks so that the rich external knowledge about the Chinese language can be leveraged more directly and efficiently. Specifically, we design a plug-and-play detection-and-reasoning module that is compatible with existing SOTA non-autoregressive CSC models to further boost their performance. We find that the detection-and-reasoning module trained for one model can also benefit other models. We also study the primary interpretability provided by the task decomposition. Extensive experiments and detailed analyses demonstrate the effectiveness and competitiveness of the proposed module.Comment: Accepted for publication in Findings of EMNLP 202

    Disentangled Phonetic Representation for Chinese Spelling Correction

    Full text link
    Chinese Spelling Correction (CSC) aims to detect and correct erroneous characters in Chinese texts. Although efforts have been made to introduce phonetic information (Hanyu Pinyin) in this task, they typically merge phonetic representations with character representations, which tends to weaken the representation effect of normal texts. In this work, we propose to disentangle the two types of features to allow for direct interaction between textual and phonetic information. To learn useful phonetic representations, we introduce a pinyin-to-character objective to ask the model to predict the correct characters based solely on phonetic information, where a separation mask is imposed to disable attention from phonetic input to text. To avoid overfitting the phonetics, we further design a self-distillation module to ensure that semantic information plays a major role in the prediction. Extensive experiments on three CSC benchmarks demonstrate the superiority of our method in using phonetic information.Comment: Accepted to ACL 2023 Main Conferenc

    Rethinking Masked Language Modeling for Chinese Spelling Correction

    Full text link
    In this paper, we study Chinese Spelling Correction (CSC) as a joint decision made by two separate models: a language model and an error model. Through empirical analysis, we find that fine-tuning BERT tends to over-fit the error model while under-fit the language model, resulting in poor generalization to out-of-distribution error patterns. Given that BERT is the backbone of most CSC models, this phenomenon has a significant negative impact. To address this issue, we are releasing a multi-domain benchmark LEMON, with higher quality and diversity than existing benchmarks, to allow a comprehensive assessment of the open domain generalization of CSC models. Then, we demonstrate that a very simple strategy, randomly masking 20\% non-error tokens from the input sequence during fine-tuning is sufficient for learning a much better language model without sacrificing the error model. This technique can be applied to any model architecture and achieves new state-of-the-art results on SIGHAN, ECSpell, and LEMON.Comment: Accepted by ACL'202

    BSpell: A CNN-Blended BERT Based Bangla Spell Checker

    Full text link
    Bangla typing is mostly performed using English keyboard and can be highly erroneous due to the presence of compound and similarly pronounced letters. Spelling correction of a misspelled word requires understanding of word typing pattern as well as the context of the word usage. A specialized BERT model named BSpell has been proposed in this paper targeted towards word for word correction in sentence level. BSpell contains an end-to-end trainable CNN sub-model named SemanticNet along with specialized auxiliary loss. This allows BSpell to specialize in highly inflected Bangla vocabulary in the presence of spelling errors. Furthermore, a hybrid pretraining scheme has been proposed for BSpell that combines word level and character level masking. Comparison on two Bangla and one Hindi spelling correction dataset shows the superiority of our proposed approach. BSpell is available as a Bangla spell checking tool via GitHub: https://github.com/Hasiburshanto/Bangla-Spell-Checke

    Chinese Spelling Correction as Rephrasing Language Model

    Full text link
    This paper studies Chinese Spelling Correction (CSC), which aims to detect and correct potential spelling errors in a given sentence. Current state-of-the-art methods regard CSC as a sequence tagging task and fine-tune BERT-based models on sentence pairs. However, we note a critical flaw in the process of tagging one character to another, that the correction is excessively conditioned on the error. This is opposite from human mindset, where individuals rephrase the complete sentence based on its semantics, rather than solely on the error patterns memorized before. Such a counter-intuitive learning process results in the bottleneck of generalizability and transferability of machine spelling correction. To address this, we propose RephrasingLanguageModelingRephrasing Language Modeling (ReLM), where the model is trained to rephrase the entire sentence by infilling additional slots, instead of character-to-character tagging. This novel training paradigm achieves the new state-of-the-art results across fine-tuned and zero-shot CSC benchmarks, outperforming previous counterparts by a large margin. Our method also learns transferable language representation when CSC is jointly trained with other tasks

    Error-Robust Retrieval for Chinese Spelling Check

    Full text link
    Chinese Spelling Check (CSC) aims to detect and correct error tokens in Chinese contexts, which has a wide range of applications. However, it is confronted with the challenges of insufficient annotated data and the issue that previous methods may actually not fully leverage the existing datasets. In this paper, we introduce our plug-and-play retrieval method with error-robust information for Chinese Spelling Check (RERIC), which can be directly applied to existing CSC models. The datastore for retrieval is built completely based on the training data, with elaborate designs according to the characteristics of CSC. Specifically, we employ multimodal representations that fuse phonetic, morphologic, and contextual information in the calculation of query and key during retrieval to enhance robustness against potential errors. Furthermore, in order to better judge the retrieved candidates, the n-gram surrounding the token to be checked is regarded as the value and utilized for specific reranking. The experiment results on the SIGHAN benchmarks demonstrate that our proposed method achieves substantial improvements over existing work.Comment: 11 pages, 3 figure
    corecore