18 research outputs found

    Confounding Equivalence in Causal Inference

    Full text link
    The paper provides a simple test for deciding, from a given causal diagram, whether two sets of variables have the same bias-reducing potential under adjustment. The test requires that one of the following two conditions holds: either (1) both sets are admissible (i.e., satisfy the back-door criterion) or (2) the Markov boundaries surrounding the manipulated variable(s) are identical in both sets. Applications to covariate selection and model testing are discussed.Comment: Appears in Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI2010

    Causally Invariant Predictor with Shift-Robustness

    Full text link
    This paper proposes an invariant causal predictor that is robust to distribution shift across domains and maximally reserves the transferable invariant information. Based on a disentangled causal factorization, we formulate the distribution shift as soft interventions in the system, which covers a wide range of cases for distribution shift as we do not make prior specifications on the causal structure or the intervened variables. Instead of imposing regularizations to constrain the invariance of the predictor, we propose to predict by the intervened conditional expectation based on the do-operator and then prove that it is invariant across domains. More importantly, we prove that the proposed predictor is the robust predictor that minimizes the worst-case quadratic loss among the distributions of all domains. For empirical learning, we propose an intuitive and flexible estimating method based on data regeneration and present a local causal discovery procedure to guide the regeneration step. The key idea is to regenerate data such that the regenerated distribution is compatible with the intervened graph, which allows us to incorporate standard supervised learning methods with the regenerated data. Experimental results on both synthetic and real data demonstrate the efficacy of our predictor in improving the predictive accuracy and robustness across domains

    Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias

    Get PDF
    We prove the main rules of causal calculus (also called do-calculus) for i/o structural causal models (ioSCMs), a generalization of a recently proposed general class of non-/linear structural causal models that allow for cycles, latent confounders and arbitrary probability distributions. We also generalize adjustment criteria and formulas from the acyclic setting to the general one (i.e. ioSCMs). Such criteria then allow to estimate (conditional) causal effects from observational data that was (partially) gathered under selection bias and cycles. This generalizes the backdoor criterion, the selection-backdoor criterion and extensions of these to arbitrary ioSCMs. Together, our results thus enable causal reasoning in the presence of cycles, latent confounders and selection bias. Finally, we extend the ID algorithm for the identification of causal effects to ioSCMs.Comment: Accepted for publication in Conference on Uncertainty in Artificial Intelligence 2019 (UAI-2019

    Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs

    Full text link
    We present a graphical criterion for covariate adjustment that is sound and complete for four different classes of causal graphical models: directed acyclic graphs (DAGs), maximum ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs). Our criterion unifies covariate adjustment for a large set of graph classes. Moreover, we define an explicit set that satisfies our criterion, if there is any set that satisfies our criterion. We also give efficient algorithms for constructing all sets that fulfill our criterion, implemented in the R package dagitty. Finally, we discuss the relationship between our criterion and other criteria for adjustment, and we provide new soundness and completeness proofs for the adjustment criterion for DAGs.Comment: 58 pages, 12 figures, to appear in JML

    Frameworks for Estimating Causal Effects in Observational Settings: Comparing Confounder Adjustment and Instrumental Variables

    Full text link
    To estimate causal effects, analysts performing observational studies in health settings utilize several strategies to mitigate bias due to confounding by indication. There are two broad classes of approaches for these purposes: use of confounders and instrumental variables (IVs). Because such approaches are largely characterized by untestable assumptions, analysts must operate under an indefinite paradigm that these methods will work imperfectly. In this tutorial, we formalize a set of general principles and heuristics for estimating causal effects in the two approaches when the assumptions are potentially violated. This crucially requires reframing the process of observational studies as hypothesizing potential scenarios where the estimates from one approach are less inconsistent than the other. While most of our discussion of methodology centers around the linear setting, we touch upon complexities in non-linear settings and flexible procedures such as target minimum loss-based estimation (TMLE) and double machine learning (DML). To demonstrate the application of our principles, we investigate the use of donepezil off-label for mild cognitive impairment (MCI). We compare and contrast results from confounder and IV methods, traditional and flexible, within our analysis and to a similar observational study and clinical trial
    corecore