189,067 research outputs found
A model for the force stretching double-stranded chain molecules
We modify and extend the recently developed statistical mechanical model for
predicting the thermodynamic properties of chain molecules having noncovalent
double-stranded conformations, as in RNA or ssDNA, and sheets in
protein, by including the constant force stretching at one end of molecules as
in a typical single-molecule experiment. The conformations of double-stranded
regions of the chain are calculated based on polymer graph-theoretic approach
[S-J. Chen and K. A. Dill, J. Chem. Phys. {\bf109}, 4602(1998)], while the
unpaired single-stranded regions are treated as self-avoiding walks. Sequence
dependence and excluded volume interaction are taken into account explicitly.
Two classes of conformations, hairpin and RNA secondary structure are explored.
For the hairpin conformations, all possible end-to-end distances corresponding
to the different types of double-stranded regions are enumerated exactly. For
the RNA secondary structure conformations, a new recursive formula
incorporating the secondary structure and end-to-end distribution has been
derived. Using the model, we investigate the extension-force curves, contact
and population distributions and re-entering phenomena, respectively. we find
that the force stretching homogeneous chains of hairpin and secondary structure
conformations are very different: the unfolding of hairpins is two-state, while
unfolding the latter is one-state. In addition, re-entering transitions only
present in hairpin conformations, but are not observed in secondary structure
conformations.Comment: 19 pages, 28 figure
Getting excited: Challenges in quantum-classical studies of excitons in polymeric systems
A combination of classical molecular dynamics (MM/MD) and quantum chemical
calculations based on the density functional theory (DFT) was performed to
describe conformational properties of diphenylethyne (DPE), methylated-DPE and
poly para phenylene ethynylene (PPE). DFT calculations were employed to improve
and develop force field parameters for MM/MD simulations. Many-body Green's
functions theory within the GW approximation and the Bethe-Salpeter equation
were utilized to describe excited states of the systems. Reliability of the
excitation energies based on the MM/MD conformations was examined and compared
to the excitation energies from DFT conformations. The results show an overall
agreement between the optical excitations based on MM/MD conformations and DFT
conformations. This allows for calculation of excitation energies based on
MM/MD conformations
Conformations of Linear DNA
We examine the conformations of a model for under- and overwound DNA. The
molecule is represented as a cylindrically symmetric elastic string subjected
to a stretching force and to constraints corresponding to a specification of
the link number. We derive a fundamental relation between the Euler angles that
describe the curve and the topological linking number. Analytical expressions
for the spatial configurations of the molecule in the infinite- length limit
were obtained. A unique configuraion minimizes the energy for a given set of
physical conditions. An elastic model incorporating thermal fluctuations
provides excellent agreement with experimental results on the plectonemic
transition.Comment: 5 pages, RevTeX; 6 postscript figure
Distances and classification of amino acids for different protein secondary structures
Window profiles of amino acids in protein sequences are taken as a
description of the amino acid environment. The relative entropy or
Kullback-Leibler distance derived from profiles is used as a measure of
dissimilarity for comparison of amino acids and secondary structure
conformations. Distance matrices of amino acid pairs at different conformations
are obtained, which display a non-negligible dependence of amino acid
similarity on conformations. Based on the conformation specific distances
clustering analysis for amino acids is conducted.Comment: 15 pages, 8 figure
RosettaBackrub--a web server for flexible backbone protein structure modeling and design.
The RosettaBackrub server (http://kortemmelab.ucsf.edu/backrub) implements the Backrub method, derived from observations of alternative conformations in high-resolution protein crystal structures, for flexible backbone protein modeling. Backrub modeling is applied to three related applications using the Rosetta program for structure prediction and design: (I) modeling of structures of point mutations, (II) generating protein conformational ensembles and designing sequences consistent with these conformations and (III) predicting tolerated sequences at protein-protein interfaces. The three protocols have been validated on experimental data. Starting from a user-provided single input protein structure in PDB format, the server generates near-native conformational ensembles. The predicted conformations and sequences can be used for different applications, such as to guide mutagenesis experiments, for ensemble-docking approaches or to generate sequence libraries for protein design
Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach.
Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands. False positives, in which a ligand in a wrong pose achieves a better docking score than that of native pose, arise as additional protein conformations are added. In the current study, we developed a new ligand-biased ensemble receptor docking method and composite scoring function which combine the use of ligand-based atomic property field (APF) method with receptor structure-based docking. This method helps us to correctly dock 30 out of 36 ligands presented by the D3R docking challenge. For the six mis-docked ligands, the cognate receptor structures prove to be too different from the 40 available experimental Pocketome conformations used for docking and could be identified only by receptor sampling beyond experimentally explored conformational subspace
- …
