9,204 research outputs found

    A bagging SVM to learn from positive and unlabeled examples

    Full text link
    We consider the problem of learning a binary classifier from a training set of positive and unlabeled examples, both in the inductive and in the transductive setting. This problem, often referred to as \emph{PU learning}, differs from the standard supervised classification problem by the lack of negative examples in the training set. It corresponds to an ubiquitous situation in many applications such as information retrieval or gene ranking, when we have identified a set of data of interest sharing a particular property, and we wish to automatically retrieve additional data sharing the same property among a large and easily available pool of unlabeled data. We propose a conceptually simple method, akin to bagging, to approach both inductive and transductive PU learning problems, by converting them into series of supervised binary classification problems discriminating the known positive examples from random subsamples of the unlabeled set. We empirically demonstrate the relevance of the method on simulated and real data, where it performs at least as well as existing methods while being faster

    DealMVC: Dual Contrastive Calibration for Multi-view Clustering

    Full text link
    Benefiting from the strong view-consistent information mining capacity, multi-view contrastive clustering has attracted plenty of attention in recent years. However, we observe the following drawback, which limits the clustering performance from further improvement. The existing multi-view models mainly focus on the consistency of the same samples in different views while ignoring the circumstance of similar but different samples in cross-view scenarios. To solve this problem, we propose a novel Dual contrastive calibration network for Multi-View Clustering (DealMVC). Specifically, we first design a fusion mechanism to obtain a global cross-view feature. Then, a global contrastive calibration loss is proposed by aligning the view feature similarity graph and the high-confidence pseudo-label graph. Moreover, to utilize the diversity of multi-view information, we propose a local contrastive calibration loss to constrain the consistency of pair-wise view features. The feature structure is regularized by reliable class information, thus guaranteeing similar samples have similar features in different views. During the training procedure, the interacted cross-view feature is jointly optimized at both local and global levels. In comparison with other state-of-the-art approaches, the comprehensive experimental results obtained from eight benchmark datasets provide substantial validation of the effectiveness and superiority of our algorithm. We release the code of DealMVC at https://github.com/xihongyang1999/DealMVC on GitHub

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference
    • …
    corecore