4 research outputs found

    Geometrical-based approach for robust human image detection

    Get PDF
    In recent years, object detection and classification has been gaining more attention, thus, there are several human object detection algorithms being used to locate and recognize human objects in images. The research of image processing and analyzing based on human shape is one of the hot topic due to the wide applicability in real applications. In this paper, we present a new object classification approach. The new approach will use a simple and robust geometrical model to classify the detected object as human or non-human in the images. In the proposed approach, the object is detected. Then the detected object under different conditions can be accurately classified (i.e. human, non-human) by combining the features that are extracted from the upper portion of the contour and the proposed geometrical model parameters. A software-based simulation using Matlab was performed using INRIA dataset and the obtained results are validated by comparing with five state-of-art approaches in literature and some of the machine learning approaches such as artificial neural networks (ANN), support vector machine (SVM), and random forest (RF). The experimental results show that the proposed object classification approach is efficient and achieved a comparable accuracy to other machine learning approaches and other state-of-art approaches. Keywords: Human classification, Geometrical model, INRIA, Machine learning, SVM, ANN, Random forest

    Machine Learning for Information Retrieval

    Get PDF
    In this thesis, we explore the use of machine learning techniques for information retrieval. More specifically, we focus on ad-hoc retrieval, which is concerned with searching large corpora to identify the documents relevant to user queries. Thisidentification is performed through a ranking task. Given a user query, an ad-hoc retrieval system ranks the corpus documents, so that the documents relevant to the query ideally appear above the others. In a machine learning framework, we are interested in proposing learning algorithms that can benefit from limited training data in order to identify a ranker likely to achieve high retrieval performance over unseen documents and queries. This problem presents novel challenges compared to traditional learning tasks, such as regression or classification. First, our task is a ranking problem, which means that the loss for a given query cannot be measured as a sum of an individual loss suffered for each corpus document. Second, most retrieval queries present a highly unbalanced setup, with a set of relevant documents accounting only for a very small fraction of the corpus. Third, ad-hoc retrieval corresponds to a kind of ``double'' generalization problem, since the learned model should not only generalize to new documents but also to new queries. Finally, our task also presents challenging efficiency constraints, since ad-hoc retrieval is typically applied to large corpora. % The main objective of this thesis is to investigate the discriminative learning of ad-hoc retrieval models. For that purpose, we propose different models based on kernel machines or neural networks adapted to different retrieval contexts. The proposed approaches rely on different online learning algorithms that allow efficient learning over large corpora. The first part of the thesis focus on text retrieval. In this case, we adopt a classical approach to the retrieval ranking problem, and order the text documents according to their estimated similarity to the text query. The assessment of semantic similarity between text items plays a key role in that setup and we propose a learning approach to identify an effective measure of text similarity. This identification is not performed relying on a set of queries with their corresponding relevant document sets, since such data are especially expensive to label and hence rare. Instead, we propose to rely on hyperlink data, since hyperlinks convey semantic proximity information that is relevant to similarity learning. This setup is hence a transfer learning setup, where we benefit from the proximity information encoded by hyperlinks to improve the performance over the ad-hoc retrieval task. We then investigate another retrieval problem, i.e. the retrieval of images from text queries. Our approach introduces a learning procedure optimizing a criterion related to the ranking performance. This criterion adapts our previous learning objective for learning textual similarity to the image retrieval problem. This yields an image ranking model that addresses the retrieval problem directly. This approach contrasts with previous research that rely on an intermediate image annotation task. Moreover, our learning procedure builds upon recent work on the online learning of kernel-based classifiers. This yields an efficient, scalable algorithm, which can benefit from recent kernels developed for image comparison. In the last part of the thesis, we show that the objective function used in the previous retrieval problems can be applied to the task of keyword spotting, i.e. the detection of given keywords in speech utterances. For that purpose, we formalize this problem as a ranking task: given a keyword, the keyword spotter should order the utterances so that the utterances containing the keyword appear above the others. Interestingly, this formulation yields an objective directly maximizing the area under the receiver operating curve, the most common keyword spotter evaluation measure. This objective is then used to train a model adapted to this intrinsically sequential problem. This model is then learned with a procedure derived from the algorithm previously introduced for the image retrieval task. To conclude, this thesis introduces machine learning approaches for ad-hoc retrieval. We propose learning models for various multi-modal retrieval setups, i.e. the retrieval of text documents from text queries, the retrieval of images from text queries and the retrieval of speech recordings from written keywords. Our approaches rely on discriminative learning and enjoy efficient training procedures, which yields effective and scalable models. In all cases, links with prior approaches were investigated and experimental comparisons were conducted

    A new classification approach based on geometrical model for human detection in images

    Get PDF
    In recent years, object detection and classification has gained more attention, thus, there are several human object detection algorithms being used to locate and recognize human objects in images. The research of image processing and analysing based on human shape is a hot topic due to its wide applicability in real applications. In this research, we present a new shape-based classification approach to categorise the detected object as human or non-human in images. The classification in this approach is based on applying a geometrical model which contains a set of parameters related to the object’s upper portion. Based on the result of these geometric parameters, our approach can simply classify the detected object as human or non-human. In general, the classification process of this new approach is based on generating a geometrical model by observing unique geometrical relations between the upper portion shape points (neck, head, shoulders) of humans, this observation is based on analysis of the change in the histogram of the x values coordinates for human upper portion shape. To present the changing of X coordinate values we have used histograms with mathematical smoothing functions to avoid small angles, as the result we observed four parameters for human objects to be used in building the classifier, by applying the four parameters of the geometrical model and based on the four parameters results, our classification approach can classify the human object from another object. The proposed approach has been tested and compared with some of the machine learning approaches such as Artificial Neural Networks (ANN), Support Vector Machine (SVM) Model, and a famous type of decision tree called Random Forest, by using 358 different images for several objects obtained from INRIA dataset (set of human and non-human as an object in digital images). From the comparison and testing result between the proposed approach and the machine learning approaches in term of accuracy performance, we indicate that the proposed approach achieved the highest accuracy rate (93.85%), with the lowest miss detection rate (11.245%) and false discovery rate (9.34%). The result achieved from the testing and comparison shows the efficiency of this presented approach
    corecore