15,771 research outputs found

    Direct Estimation of Information Divergence Using Nearest Neighbor Ratios

    Full text link
    We propose a direct estimation method for R\'{e}nyi and f-divergence measures based on a new graph theoretical interpretation. Suppose that we are given two sample sets XX and YY, respectively with NN and MM samples, where η:=M/N\eta:=M/N is a constant value. Considering the kk-nearest neighbor (kk-NN) graph of YY in the joint data set (X,Y)(X,Y), we show that the average powered ratio of the number of XX points to the number of YY points among all kk-NN points is proportional to R\'{e}nyi divergence of XX and YY densities. A similar method can also be used to estimate f-divergence measures. We derive bias and variance rates, and show that for the class of γ\gamma-H\"{o}lder smooth functions, the estimator achieves the MSE rate of O(N−2γ/(γ+d))O(N^{-2\gamma/(\gamma+d)}). Furthermore, by using a weighted ensemble estimation technique, for density functions with continuous and bounded derivatives of up to the order dd, and some extra conditions at the support set boundary, we derive an ensemble estimator that achieves the parametric MSE rate of O(1/N)O(1/N). Our estimators are more computationally tractable than other competing estimators, which makes them appealing in many practical applications.Comment: 2017 IEEE International Symposium on Information Theory (ISIT

    Sparse Model Identification and Learning for Ultra-high-dimensional Additive Partially Linear Models

    Get PDF
    The additive partially linear model (APLM) combines the flexibility of nonparametric regression with the parsimony of regression models, and has been widely used as a popular tool in multivariate nonparametric regression to alleviate the "curse of dimensionality". A natural question raised in practice is the choice of structure in the nonparametric part, that is, whether the continuous covariates enter into the model in linear or nonparametric form. In this paper, we present a comprehensive framework for simultaneous sparse model identification and learning for ultra-high-dimensional APLMs where both the linear and nonparametric components are possibly larger than the sample size. We propose a fast and efficient two-stage procedure. In the first stage, we decompose the nonparametric functions into a linear part and a nonlinear part. The nonlinear functions are approximated by constant spline bases, and a triple penalization procedure is proposed to select nonzero components using adaptive group LASSO. In the second stage, we refit data with selected covariates using higher order polynomial splines, and apply spline-backfitted local-linear smoothing to obtain asymptotic normality for the estimators. The procedure is shown to be consistent for model structure identification. It can identify zero, linear, and nonlinear components correctly and efficiently. Inference can be made on both linear coefficients and nonparametric functions. We conduct simulation studies to evaluate the performance of the method and apply the proposed method to a dataset on the Shoot Apical Meristem (SAM) of maize genotypes for illustration
    • …
    corecore