17 research outputs found

    Detectability of distributed consensus-based observer networks: An elementary analysis and extensions

    Full text link
    This paper continues the study of local detectability and observability requirements on components of distributed observers networks to ensure detectability properties of the network. First, we present a sketch of an elementary proof of the known result equating the multiplicity of the zero eigenvalue of the Laplace matrix of a digraph to the number of its maximal reachable subgraphs. Unlike the existing algebraic proof, we use a direct analysis of the graph topology. This result is then used in the second part of the paper to extend our previous results which connect the detectability of an observer network with corresponding local detectability and observability properties of its node observers. The proposed extension allows for nonidentical matrices to be used in the interconnections.Comment: Accepted for presentation at the 2014 Australian Control Conference, Canberra Australia, Nov 201

    Event-based H∞ consensus control of multi-agent systems with relative output feedback: The finite-horizon case

    Get PDF
    In this technical note, the H∞ consensus control problem is investigated over a finite horizon for general discrete time-varying multi-agent systems subject to energy-bounded external disturbances. A decentralized estimation-based output feedback control protocol is put forward via the relative output measurements. A novel event-based mechanism is proposed for each intelligent agent to utilize the available information in order to decide when to broadcast messages and update control input. The aim of the problem addressed is to co-design the time-varying controller and estimator parameters such that the controlled multi-agent systems achieve consensus with a disturbance attenuation level γ over a finite horizon [0,T]. A constrained recursive Riccati difference equation approach is developed to derive the sufficient conditions under which the H∞ consensus performance is guaranteed in the framework of event-based scheme. Furthermore, the desired controller and estimator parameters can be iteratively computed by resorting to the Moore-Penrose pseudo inverse. Finally, the effectiveness of the developed event-based H∞ consensus control strategy is demonstrated in the numerical simulation

    Detection and Mitigation of Biasing Attacks on Distributed Estimation Networks

    Full text link
    The paper considers a problem of detecting and mitigating biasing attacks on networks of state observers targeting cooperative state estimation algorithms. The problem is cast within the recently developed framework of distributed estimation utilizing the vector dissipativity approach. The paper shows that a network of distributed observers can be endowed with an additional attack detection layer capable of detecting biasing attacks and correcting their effect on estimates produced by the network. An example is provided to illustrate the performance of the proposed distributed attack detector.Comment: Accepted for publication in Automatic

    Fixed-Time Convergent Distributed Observer Design of Linear Systems: A Kernel-Based Approach

    Get PDF
    The robust distributed state estimation for a class of continuous-time linear time-invariant systems is achieved by a novel kernel-based distributed observer, which, for the first time, ensures fixed-time convergence properties. The communication network between the agents is prescribed by a directed graph in which each node involves a fixed-time convergent estimator. The local observer estimates and broadcasts the observable states among neighbours so that the full state vector can be recovered at each node and the estimation error reaches zero after a predefined fixed time in the absence of perturbation. This represents a new distributed estimation framework that enables faster convergence speed and further reduced information exchange compared to a conventional Luenberger-like approach. The ubiquitous timevarying communication delay across the network is suitably compensated by a prediction scheme. Moreover, the robustness of the algorithm in the presence of bounded measurement and process noise is characterised. Numerical simulations and comparisons demonstrate the effectiveness of the observer and its advantages over the existing methods

    Distributed Estimation and Control for LTI Systems under Finite-Time Agreement

    Full text link
    This paper considers a strongly connected network of agents, each capable of partially observing and controlling a discrete-time linear time-invariant (LTI) system that is jointly observable and controllable. Additionally, agents collaborate to achieve a shared estimated state, computed as the average of their local state estimates. Recent studies suggest that increasing the number of average consensus steps between state estimation updates allows agents to choose from a wider range of state feedback controllers, thereby potentially enhancing control performance. However, such approaches require that agents know the input matrices of all other nodes, and the selection of control gains is, in general, centralized. Motivated by the limitations of such approaches, we propose a new technique where: (i) estimation and control gain design is fully distributed and finite-time, and (ii) agent coordination involves a finite-time exact average consensus algorithm, allowing arbitrary selection of estimation convergence rate despite the estimator's distributed nature. We verify our methodology's effectiveness using illustrative numerical simulations
    corecore