24 research outputs found

    A view of Estimation of Distribution Algorithms through the lens of Expectation-Maximization

    Full text link
    We show that a large class of Estimation of Distribution Algorithms, including, but not limited to, Covariance Matrix Adaption, can be written as a Monte Carlo Expectation-Maximization algorithm, and as exact EM in the limit of infinite samples. Because EM sits on a rigorous statistical foundation and has been thoroughly analyzed, this connection provides a new coherent framework with which to reason about EDAs

    Machine learning-guided directed evolution for protein engineering

    Get PDF
    Machine learning (ML)-guided directed evolution is a new paradigm for biological design that enables optimization of complex functions. ML methods use data to predict how sequence maps to function without requiring a detailed model of the underlying physics or biological pathways. To demonstrate ML-guided directed evolution, we introduce the steps required to build ML sequence-function models and use them to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to using ML for protein engineering as well as the current literature and applications of this new engineering paradigm. ML methods accelerate directed evolution by learning from information contained in all measured variants and using that information to select sequences that are likely to be improved. We then provide two case studies that demonstrate the ML-guided directed evolution process. We also look to future opportunities where ML will enable discovery of new protein functions and uncover the relationship between protein sequence and function.Comment: Made significant revisions to focus on aspects most relevant to applying machine learning to speed up directed evolutio

    Fast differentiable DNA and protein sequence optimization for molecular design

    Full text link
    Designing DNA and protein sequences with improved function has the potential to greatly accelerate synthetic biology. Machine learning models that accurately predict biological fitness from sequence are becoming a powerful tool for molecular design. Activation maximization offers a simple design strategy for differentiable models: one-hot coded sequences are first approximated by a continuous representation which is then iteratively optimized with respect to the predictor oracle by gradient ascent. While elegant, this method suffers from vanishing gradients and may cause predictor pathologies leading to poor convergence. Here, we build on a previously proposed straight-through approximation method to optimize through discrete sequence samples. By normalizing nucleotide logits across positions and introducing an adaptive entropy variable, we remove bottlenecks arising from overly large or skewed sampling parameters. The resulting algorithm, which we call Fast SeqProp, achieves up to 100-fold faster convergence compared to previous versions of activation maximization and finds improved fitness optima for many applications. We demonstrate Fast SeqProp by designing DNA and protein sequences for six deep learning predictors, including a protein structure predictor.Comment: All code available at http://www.github.com/johli/seqprop; Moved example sequences from Suppl to new Figure 2, Added new benchmark comparison to Section 4.3, Moved some technical comparisons to Suppl, Added new Methods sectio

    Conservative objective models are a special kind of contrastive divergence-based energy model

    Full text link
    In this work we theoretically show that conservative objective models (COMs) for offline model-based optimisation (MBO) are a special kind of contrastive divergence-based energy model, one where the energy function represents both the unconditional probability of the input and the conditional probability of the reward variable. While the initial formulation only samples modes from its learned distribution, we propose a simple fix that replaces its gradient ascent sampler with a Langevin MCMC sampler. This gives rise to a special probabilistic model where the probability of sampling an input is proportional to its predicted reward. Lastly, we show that better samples can be obtained if the model is decoupled so that the unconditional and conditional probabilities are modelled separately

    Causal Graphs Underlying Generative Models: Path to Learning with Limited Data

    Full text link
    Training generative models that capture rich semantics of the data and interpreting the latent representations encoded by such models are very important problems in unsupervised learning. In this work, we provide a simple algorithm that relies on perturbation experiments on latent codes of a pre-trained generative autoencoder to uncover a causal graph that is implied by the generative model. We leverage pre-trained attribute classifiers and perform perturbation experiments to check for influence of a given latent variable on a subset of attributes. Given this, we show that one can fit an effective causal graph that models a structural equation model between latent codes taken as exogenous variables and attributes taken as observed variables. One interesting aspect is that a single latent variable controls multiple overlapping subsets of attributes unlike conventional approach that tries to impose full independence. Using a pre-trained RNN-based generative autoencoder trained on a dataset of peptide sequences, we demonstrate that the learnt causal graph from our algorithm between various attributes and latent codes can be used to predict a specific property for sequences which are unseen. We compare prediction models trained on either all available attributes or only the ones in the Markov blanket and empirically show that in both the unsupervised and supervised regimes, typically, using the predictor that relies on Markov blanket attributes generalizes better for out-of-distribution sequences
    corecore