36 research outputs found

    Residual Vulnerabilities to Power side channel attacks of lightweight ciphers cryptography competition Finalists

    Get PDF
    The protection of communications between Internet of Things (IoT) devices is of great concern because the information exchanged contains vital sensitive data. Malicious agents seek to exploit those data to extract secret information about the owners or the system. Power side channel attacks are of great concern on these devices because their power consumption unintentionally leaks information correlatable to the device\u27s secret data. Several studies have demonstrated the effectiveness of authenticated encryption with advanced data, in protecting communications with these devices. A comprehensive evaluation of the seven (out of 10) algorithm finalists of the National Institute of Standards and Technology (NIST) IoT lightweight cipher competition that do not integrate built‐in countermeasures is proposed. The study shows that, nonetheless, they still present some residual vulnerabilities to power side channel attacks (SCA). For five ciphers, an attack methodology as well as the leakage function needed to perform correlation power analysis (CPA) is proposed. The authors assert that Ascon, Sparkle, and PHOTON‐Beetle security vulnerability can generally be assessed with the security assumptions “Chosen ciphertext attack and leakage in encryption only, with nonce‐misuse resilience adversary (CCAmL1)” and “Chosen ciphertext attack and leakage in encryption only with nonce‐respecting adversary (CCAL1)”, respectively. However, the security vulnerability of GIFT‐COFB, Grain, Romulus, and TinyJambu can be evaluated more straightforwardly with publicly available leakage models and solvers. They can also be assessed simply by increasing the number of traces collected to launch the attack

    A Comprehensive Survey on the Implementations, Attacks, and Countermeasures of the Current NIST Lightweight Cryptography Standard

    Full text link
    This survey is the first work on the current standard for lightweight cryptography, standardized in 2023. Lightweight cryptography plays a vital role in securing resource-constrained embedded systems such as deeply-embedded systems (implantable and wearable medical devices, smart fabrics, smart homes, and the like), radio frequency identification (RFID) tags, sensor networks, and privacy-constrained usage models. National Institute of Standards and Technology (NIST) initiated a standardization process for lightweight cryptography and after a relatively-long multi-year effort, eventually, in Feb. 2023, the competition ended with ASCON as the winner. This lightweight cryptographic standard will be used in deeply-embedded architectures to provide security through confidentiality and integrity/authentication (the dual of the legacy AES-GCM block cipher which is the NIST standard for symmetric key cryptography). ASCON's lightweight design utilizes a 320-bit permutation which is bit-sliced into five 64-bit register words, providing 128-bit level security. This work summarizes the different implementations of ASCON on field-programmable gate array (FPGA) and ASIC hardware platforms on the basis of area, power, throughput, energy, and efficiency overheads. The presented work also reviews various differential and side-channel analysis attacks (SCAs) performed across variants of ASCON cipher suite in terms of algebraic, cube/cube-like, forgery, fault injection, and power analysis attacks as well as the countermeasures for these attacks. We also provide our insights and visions throughout this survey to provide new future directions in different domains. This survey is the first one in its kind and a step forward towards scrutinizing the advantages and future directions of the NIST lightweight cryptography standard introduced in 2023

    A Dynamic Cube Attack on 105105 round Grain v1

    Get PDF
    As far as the Differential Cryptanalysis of reduced round Grain v1 is concerned, the best results were those published by Knellwolf et al. in Asiacrypt 20112011. In an extended version of the paper, it was shown that it was possible to retrieve {\bf (i)} 55 expressions in the Secret Key bits for a variant of Grain v1 that employs 9797 rounds (in place of 160160) in its Key Scheduling process using 2272^{27} chosen IVs and {\bf (ii)} 11 expression in Secret Key bits for a variant that employs 104104 rounds in its Key Scheduling using 2352^{35} chosen IVs. However, the second attack on 104104 rounds, had a success probability of around 5050\%, which is to say that the attack worked for only around one half of the Secret Keys. In this paper we propose a dynamic cube attack on 105105 round Grain v1, that has a success probability of 100100\%, and thus we report an improvement of 88 rounds over the previous best attack on Grain v1 that attacks the entire Keyspace. We take the help of the tool Δ\Delta{\sf Grain}KSA_{\sf KSA}, proposed by Banik at ACISP 2014, to track the differential trails induced in the internal state of Grain v1 by any difference in the IV bits, and we prove that a suitably introduced difference in the IV leads to a distinguisher for the output bit produced in the 105th105^{th} round. This, in turn, helps determine the values of 66 expressions in the Secret Key bits

    LIZARD – A Lightweight Stream Cipher for Power-constrained Devices

    Get PDF
    Time-memory-data (TMD) tradeoff attacks limit the security level of many classical stream ciphers (like E0, A5/1, Trivium, Grain) to 1/2n, where n denotes the inner state length of the underlying keystream generator. In this paper, we present Lizard, a lightweight stream cipher for power-constrained devices like passive RFID tags. Its hardware efficiency results from combining a Grain-like design with the FP(1)-mode, a recently suggested construction principle for the state initialization of stream ciphers, which offers provable 2/3n-security against TMD tradeoff attacks aiming at key recovery. Lizard uses 120-bit keys, 64-bit IVs and has an inner state length of 121 bit. It is supposed to provide 80-bit security against key recovery attacks. Lizard allows to generate up to 218 keystream bits per key/IV pair, which would be sufficient for many existing communication scenarios like Bluetooth, WLAN or HTTPS

    Security analysis of NIST-LWC contest finalists

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringTraditional cryptographic standards are designed with a desktop and server environment in mind, so, with the relatively recent proliferation of small, resource constrained devices in the Internet of Things, sensor networks, embedded systems, and more, there has been a call for lightweight cryptographic standards with security, performance and resource requirements tailored for the highly-constrained environments these devices find themselves in. In 2015 the National Institute of Standards and Technology began a Standardization Process in order to select one or more Lightweight Cryptographic algorithms. Out of the original 57 submissions ten finalists remain, with ASCON and Romulus being among the most scrutinized out of them. In this dissertation I will introduce some concepts required for easy understanding of the body of work, do an up-to-date revision on the current situation on the standardization process from a security and performance standpoint, a description of ASCON and Romulus, and new best known analysis, and a comparison of the two, with their advantages, drawbacks, and unique traits.Os padrões criptográficos tradicionais foram elaborados com um ambiente de computador e servidor em mente. Com a proliferação de dispositivos de pequenas dimensões tanto na Internet of Things, redes de sensores e sistemas embutidos, apareceu uma necessidade para se definir padrões para algoritmos de criptografia leve, com prioridades de segurança, performance e gasto de recursos equilibrados para os ambientes altamente limitados em que estes dispositivos operam. Em 2015 o National Institute of Standards and Technology lançou um processo de estandardização com o objectivo de escolher um ou mais algoritmos de criptografia leve. Das cinquenta e sete candidaturas originais sobram apenas dez finalistas, sendo ASCON e Romulus dois desses finalistas mais examinados. Nesta dissertação irei introduzir alguns conceitos necessários para uma fácil compreensão do corpo deste trabalho, assim como uma revisão atualizada da situação atual do processo de estandardização de um ponto de vista tanto de segurança como de performance, uma descrição do ASCON e do Romulus assim como as suas melhores análises recentes e uma comparação entre os dois, frisando as suas vantagens, desvantagens e aspectos únicos

    New Configurations of Grain Ciphers: Security Against Slide Attacks

    Get PDF
    eSTREAM brought to the attention of the cryptographic community a number of stream ciphers including Grain v0 and its revised version Grain v1. The latter was selected as a finalist of the competition\u27s hardware-based portfolio. The Grain family includes two more instantiations, namely Grain 128 and Grain 128a. The scope our paper is to provide an insight on how to obtain secure configurations of the Grain family of stream ciphers. We propose different variants for Grain and analyze their security with respect to slide attacks. More precisely, as various attacks against initialization algorithms of Grain were discussed in the literature, we study the security impact of various parameters which may influence the LFSR\u27s initialization scheme

    Provable security for lightweight message authentication and encryption

    Full text link
    The birthday bound often limits the security of a cryptographic scheme to half of the block size or internal state size. This implies that cryptographic schemes require a block size or internal state size that is twice the security level, resulting in larger and more resource-intensive designs. In this thesis, we introduce abstract constructions for message authentication codes and stream ciphers that we demonstrate to be secure beyond the birthday bound. Our message authentication codes were inspired by previous work, specifically the message authentication code EWCDM by Cogliati and Seurin, as well as the work by Mennink and Neves, which demonstrates easy proofs of security for the sum of permutations and an improved bound for EWCDM. We enhance the sum of permutations by incorporating a hash value and a nonce in our stateful design, and in our stateless design, we utilize two hash values. One advantage over EWCDM is that the permutation calls, or block cipher calls, can be parallelized, whereas in EWCDM they must be performed sequentially. We demonstrate that our constructions provide a security level of 2n/3 bits in the nonce-respecting setting. Subsequently, this bound was further improved to 3n/4 bits of security. Additionally, it was later discovered that security degrades gracefully with nonce repetitions, unlike EWCDM, where the security drops to the birthday bound with a single nonce repetition. Contemporary stream cipher designs aim to minimize the hardware module's resource requirements by incorporating an externally available resource, all while maintaining a high level of security. The security level is typically measured in relation to the size of the volatile internal state, i.e., the state cells within the cipher's hardware module. Several designs have been proposed that continuously access the externally available non-volatile secret key during keystream generation. However, there exists a generic distinguishing attack with birthday bound complexity. We propose schemes that continuously access the externally available non-volatile initial value. For all constructions, conventional or contemporary, we provide proofs of security against generic attacks in the random oracle model. Notably, stream ciphers that use the non-volatile initial value during keystream generation offer security beyond the birthday bound. Based on these findings, we propose a new stream cipher design called DRACO

    Fruit-v2: Ultra-Lightweight Stream Cipher with Shorter Internal State

    Get PDF
    A few lightweight stream ciphers were introduced for hardware applications in the eSTREAM project. In FSE 2015, while presenting a new idea (i.e. the design of stream ciphers with the shorter internal state by using a secret key, not only in the initialization but also in the keystream generation), Sprout was proposed. Unfortunately, Sprout is insecure. Because Grain-v1 is the lightest cipher in the portfolio of the eSTREAM project, we introduce Fruit-v2 as a successor of the Grain-v1 and Sprout. It is demonstrated that Fruit-v2 is safe and ultra-lightweight. The size of LFSR and NFSR in Fruit-v2 is only 80 bits (for 80-bit security level), while for resistance to the classical time-memory-data trade-off attack, the internal state size should be at least twice of the security level. To satisfy this rule and to design a concrete cipher, we used some new design ideas. The discussions are presented that Fruit-v2 can be more resistant than Grain-v1 to some attacks such as classical time-memory-data trade-off. The main objective of this work is to show how it is possible to exploit a secret key in a design to achieve smaller area size. It is possible to redesign many of stream ciphers (by the new idea) and achieve significantly smaller area size by the new idea

    Slid Pairs of the Fruit-80 Stream Cipher

    Get PDF
    Fruit is a small-state stream cipher designed for securing communications among resource-constrained devices. The design of Fruit was first known to the public in 2016. It was later improved as Fruit-80 in 2018 and becomes the latest and final version among all versions of the Fruit stream ciphers. In this paper, we analyze the Fruit-80 stream cipher. We found that Fruit-80 generates identical keystreams from certain two distinct pairs of key and IV. Such pair of key and IV pairs is known as a slid pair. Moreover, we discover that when two pairs of key and IV fulfill specific characteristics, they will generate identical keystreams. This shows that slid pairs do not always exist arbitrarily in Fruit-80. We define specific rules which are equivalent to the characteristics. Using the defined rules, we are able to automate the searching process using an MILP solver, which makes searching of the slid pairs trivial

    Links between Division Property and Other Cube Attack Variants

    Get PDF
    A theoretically reliable key-recovery attack should evaluate not only the non-randomness for the correct key guess but also the randomness for the wrong ones as well. The former has always been the main focus but the absence of the latter can also cause self-contradicted results. In fact, the theoretic discussion of wrong key guesses is overlooked in quite some existing key-recovery attacks, especially the previous cube attack variants based on pure experiments. In this paper, we draw links between the division property and several variants of the cube attack. In addition to the zero-sum property, we further prove that the bias phenomenon, the non-randomness widely utilized in dynamic cube attacks and cube testers, can also be reflected by the division property. Based on such links, we are able to provide several results: Firstly, we give a dynamic cube key-recovery attack on full Grain-128. Compared with Dinur et al.’s original one, this attack is supported by a theoretical analysis of the bias based on a more elaborate assumption. Our attack can recover 3 key bits with a complexity 297.86 and evaluated success probability 99.83%. Thus, the overall complexity for recovering full 128 key bits is 2125. Secondly, now that the bias phenomenon can be efficiently and elaborately evaluated, we further derive new secure bounds for Grain-like primitives (namely Grain-128, Grain-128a, Grain-V1, Plantlet) against both the zero-sum and bias cube testers. Our secure bounds indicate that 256 initialization rounds are not able to guarantee Grain-128 to resist bias-based cube testers. This is an efficient tool for newly designed stream ciphers for determining the number of initialization rounds. Thirdly, we improve Wang et al.’s relaxed term enumeration technique proposed in CRYPTO 2018 and extend their results on Kreyvium and ACORN by 1 and 13 rounds (reaching 892 and 763 rounds) with complexities 2121.19 and 2125.54 respectively. To our knowledge, our results are the current best key-recovery attacks on these two primitives
    corecore