4,781 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Robust estimation in exponential families: from theory to practice

    Get PDF

    BAYESIAN ANALYSIS OF TOBIT QUANTILE REGRESSION WITH ADAPTIVE LASSO PENALTY IN HOUSEHOLD EXPENDITURE FOR CIGARETTE CONSUMPTION

    Get PDF
    Tobit Quantile Regression with Adaptive Lasso Penalty is a quantile regression model on censored data that adds Lasso's adaptive penalty to its parameter estimation. The estimation of the regression parameters is solved by Bayesian analysis. Parameters are assumed to follow a certain distribution called the prior distribution. Using the sample information along with the prior distribution, the conditional posterior distribution is searched using the Box-Tiao rule. Computational solutions are solved by the MCMC Gibbs Sampling algorithm. Gibbs Sampling can generate samples based on the conditional posterior distribution of each parameter in order to obtain a posterior joint distribution. Tobit Quantile Regression with Adaptive Lasso Penalty was applied to data on Household Expenditure for Cigarette Consumption in 2011. As a comparison for data analysis, Tobit Quantile Regression was used. The results of data analysis show that the Tobit Quantile Regression model with  Adaptive Lasso Penalty is better than the Tobit Quantile Regression

    A Practitioner's Guide to Bayesian Inference in Pharmacometrics using Pumas

    Full text link
    This paper provides a comprehensive tutorial for Bayesian practitioners in pharmacometrics using Pumas workflows. We start by giving a brief motivation of Bayesian inference for pharmacometrics highlighting limitations in existing software that Pumas addresses. We then follow by a description of all the steps of a standard Bayesian workflow for pharmacometrics using code snippets and examples. This includes: model definition, prior selection, sampling from the posterior, prior and posterior simulations and predictions, counter-factual simulations and predictions, convergence diagnostics, visual predictive checks, and finally model comparison with cross-validation. Finally, the background and intuition behind many advanced concepts in Bayesian statistics are explained in simple language. This includes many important ideas and precautions that users need to keep in mind when performing Bayesian analysis. Many of the algorithms, codes, and ideas presented in this paper are highly applicable to clinical research and statistical learning at large but we chose to focus our discussions on pharmacometrics in this paper to have a narrower scope in mind and given the nature of Pumas as a software primarily for pharmacometricians

    Attribute network models, stochastic approximation, and network sampling and ranking algorithms

    Full text link
    We analyze dynamic random network models where younger vertices connect to older ones with probabilities proportional to their degrees as well as a propensity kernel governed by their attribute types. Using stochastic approximation techniques we show that, in the large network limit, such networks converge in the local weak sense to randomly stopped multitype branching processes whose explicit description allows for the derivation of asymptotics for a wide class of network functionals. These asymptotics imply that while degree distribution tail exponents depend on the attribute type (already derived by Jordan (2013)), Page-rank centrality scores have the \emph{same} tail exponent across attributes. Moreover, the mean behavior of the limiting Page-rank score distribution can be explicitly described and shown to depend on the attribute type. The limit results also give explicit formulae for the performance of various network sampling mechanisms. One surprising consequence is the efficacy of Page-rank and walk based network sampling schemes for directed networks in the setting of rare minorities. The results also allow one to evaluate the impact of various proposed mechanisms to increase degree centrality of minority attributes in the network, and to quantify the bias in inferring about the network from an observed sample. Further, we formalize the notion of resolvability of such models where, owing to propagation of chaos type phenomenon in the evolution dynamics for such models, one can set up a correspondence to models driven by continuous time branching process dynamics.Comment: 48 page
    • …
    corecore