15 research outputs found

    Conditional Gradient Algorithms for Rank-One Matrix Approximations with a Sparsity Constraint

    Full text link
    The sparsity constrained rank-one matrix approximation problem is a difficult mathematical optimization problem which arises in a wide array of useful applications in engineering, machine learning and statistics, and the design of algorithms for this problem has attracted intensive research activities. We introduce an algorithmic framework, called ConGradU, that unifies a variety of seemingly different algorithms that have been derived from disparate approaches, and allows for deriving new schemes. Building on the old and well-known conditional gradient algorithm, ConGradU is a simplified version with unit step size and yields a generic algorithm which either is given by an analytic formula or requires a very low computational complexity. Mathematical properties are systematically developed and numerical experiments are given.Comment: Minor changes. Final version. To appear in SIAM Revie

    The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing

    Full text link
    This paper deals with the computational complexity of conditions which guarantee that the NP-hard problem of finding the sparsest solution to an underdetermined linear system can be solved by efficient algorithms. In the literature, several such conditions have been introduced. The most well-known ones are the mutual coherence, the restricted isometry property (RIP), and the nullspace property (NSP). While evaluating the mutual coherence of a given matrix is easy, it has been suspected for some time that evaluating RIP and NSP is computationally intractable in general. We confirm these conjectures by showing that for a given matrix A and positive integer k, computing the best constants for which the RIP or NSP hold is, in general, NP-hard. These results are based on the fact that determining the spark of a matrix is NP-hard, which is also established in this paper. Furthermore, we also give several complexity statements about problems related to the above concepts.Comment: 13 pages; accepted for publication in IEEE Trans. Inf. Theor

    Near-optimal bounds for phase synchronization

    Full text link
    The problem of phase synchronization is to estimate the phases (angles) of a complex unit-modulus vector zz from their noisy pairwise relative measurements C=zzβˆ—+ΟƒWC = zz^* + \sigma W, where WW is a complex-valued Gaussian random matrix. The maximum likelihood estimator (MLE) is a solution to a unit-modulus constrained quadratic programming problem, which is nonconvex. Existing works have proposed polynomial-time algorithms such as a semidefinite relaxation (SDP) approach or the generalized power method (GPM) to solve it. Numerical experiments suggest both of these methods succeed with high probability for Οƒ\sigma up to O~(n1/2)\tilde{\mathcal{O}}(n^{1/2}), yet, existing analyses only confirm this observation for Οƒ\sigma up to O(n1/4)\mathcal{O}(n^{1/4}). In this paper, we bridge the gap, by proving SDP is tight for Οƒ=O(n/log⁑n)\sigma = \mathcal{O}(\sqrt{n /\log n}), and GPM converges to the global optimum under the same regime. Moreover, we establish a linear convergence rate for GPM, and derive a tighter β„“βˆž\ell_\infty bound for the MLE. A novel technique we develop in this paper is to track (theoretically) nn closely related sequences of iterates, in addition to the sequence of iterates GPM actually produces. As a by-product, we obtain an β„“βˆž\ell_\infty perturbation bound for leading eigenvectors. Our result also confirms intuitions that use techniques from statistical mechanics.Comment: 34 pages, 1 figur
    corecore