25 research outputs found

    On the Importance of Backbone to the Adversarial Robustness of Object Detectors

    Full text link
    Object detection is a critical component of various security-sensitive applications, such as autonomous driving and video surveillance. However, existing deep learning-based object detectors are vulnerable to adversarial attacks, which poses a significant challenge to their reliability and safety. Through experiments, we found that existing works on improving the adversarial robustness of object detectors have given a false sense of security. We argue that using adversarially pre-trained backbone networks is essential for enhancing the adversarial robustness of object detectors. We propose a simple yet effective recipe for fast adversarial fine-tuning on object detectors with adversarially pre-trained backbones. Without any modifications to the structure of object detectors, our recipe achieved significantly better adversarial robustness than previous works. Moreover, we explore the potential of different modern object detectors to improve adversarial robustness using our recipe and demonstrate several interesting findings. Our empirical results set a new milestone and deepen the understanding of adversarially robust object detection. Code and trained checkpoints will be publicly available.Comment: 12 page

    DFormer: Diffusion-guided Transformer for Universal Image Segmentation

    Full text link
    This paper introduces an approach, named DFormer, for universal image segmentation. The proposed DFormer views universal image segmentation task as a denoising process using a diffusion model. DFormer first adds various levels of Gaussian noise to ground-truth masks, and then learns a model to predict denoising masks from corrupted masks. Specifically, we take deep pixel-level features along with the noisy masks as inputs to generate mask features and attention masks, employing diffusion-based decoder to perform mask prediction gradually. At inference, our DFormer directly predicts the masks and corresponding categories from a set of randomly-generated masks. Extensive experiments reveal the merits of our proposed contributions on different image segmentation tasks: panoptic segmentation, instance segmentation, and semantic segmentation. Our DFormer outperforms the recent diffusion-based panoptic segmentation method Pix2Seq-D with a gain of 3.6% on MS COCO val2017 set. Further, DFormer achieves promising semantic segmentation performance outperforming the recent diffusion-based method by 2.2% on ADE20K val set. Our source code and models will be publicly on https://github.com/cp3wan/DForme

    H2RBox-v2: Boosting HBox-supervised Oriented Object Detection via Symmetric Learning

    Full text link
    With the increasing demand for oriented object detection e.g. in autonomous driving and remote sensing, the oriented annotation has become a labor-intensive work. To make full use of existing horizontally annotated datasets and reduce the annotation cost, a weakly-supervised detector H2RBox for learning the rotated box (RBox) from the horizontal box (HBox) has been proposed and received great attention. This paper presents a new version, H2RBox-v2, to further bridge the gap between HBox-supervised and RBox-supervised oriented object detection. While exploiting axisymmetry via flipping and rotating consistencies is available through our theoretical analysis, H2RBox-v2, using a weakly-supervised branch similar to H2RBox, is embedded with a novel self-supervised branch that learns orientations from the symmetry inherent in the image of objects. Complemented by modules to cope with peripheral issues, e.g. angular periodicity, a stable and effective solution is achieved. To our knowledge, H2RBox-v2 is the first symmetry-supervised paradigm for oriented object detection. Compared to H2RBox, our method is less susceptible to low annotation quality and insufficient training data, which in such cases is expected to give a competitive performance much closer to fully-supervised oriented object detectors. Specifically, the performance comparison between H2RBox-v2 and Rotated FCOS on DOTA-v1.0/1.5/2.0 is 72.31%/64.76%/50.33% vs. 72.44%/64.53%/51.77%, 89.66% vs. 88.99% on HRSC, and 42.27% vs. 41.25% on FAIR1M.Comment: 13 pages, 4 figures, 7 tables, the source code is available at https://github.com/open-mmlab/mmrotat

    Dynamic Focus-aware Positional Queries for Semantic Segmentation

    Full text link
    Most of the latest top semantic segmentation approaches are based on vision Transformers, particularly DETR-like frameworks, which employ a set of queries in the Transformer decoder. Each query is composed of a content query that preserves semantic information and a positional query that provides positional guidance for aggregating the query-specific context. However, the positional queries in the Transformer decoder layers are typically represented as fixed learnable weights, which often encode dataset statistics for segments and can be inaccurate for individual samples. Therefore, in this paper, we propose to generate positional queries dynamically conditioned on the cross-attention scores and the localization information of the preceding layer. By doing so, each query is aware of its previous focus, thus providing more accurate positional guidance and encouraging the cross-attention consistency across the decoder layers. In addition, we also propose an efficient way to deal with high-resolution cross-attention by dynamically determining the contextual tokens based on the low-resolution cross-attention maps to perform local relation aggregation. Our overall framework termed FASeg (Focus-Aware semantic Segmentation) provides a simple yet effective solution for semantic segmentation. Extensive experiments on ADE20K and Cityscapes show that our FASeg achieves state-of-the-art performance, e.g., obtaining 48.3% and 49.6% mIoU respectively for single-scale inference on ADE20K validation set with ResNet-50 and Swin-T backbones, and barely increases the computation consumption from Mask2former. Source code will be made publicly available at https://github.com/zip-group/FASeg.Comment: Tech repor

    AIMS: All-Inclusive Multi-Level Segmentation

    Full text link
    Despite the progress of image segmentation for accurate visual entity segmentation, completing the diverse requirements of image editing applications for different-level region-of-interest selections remains unsolved. In this paper, we propose a new task, All-Inclusive Multi-Level Segmentation (AIMS), which segments visual regions into three levels: part, entity, and relation (two entities with some semantic relationships). We also build a unified AIMS model through multi-dataset multi-task training to address the two major challenges of annotation inconsistency and task correlation. Specifically, we propose task complementarity, association, and prompt mask encoder for three-level predictions. Extensive experiments demonstrate the effectiveness and generalization capacity of our method compared to other state-of-the-art methods on a single dataset or the concurrent work on segmenting anything. We will make our code and training model publicly available.Comment: Technical Repor
    corecore