38,840 research outputs found

    On Conditional Statistics in Scalar Turbulence: Theory vs. Experiment

    Full text link
    We consider turbulent advection of a scalar field T(\B.r), passive or active, and focus on the statistics of gradient fields conditioned on scalar differences Ξ”T(R)\Delta T(R) across a scale RR. In particular we focus on two conditional averages βŸ¨βˆ‡2Tβˆ£Ξ”T(R)⟩\langle\nabla^2 T\big|\Delta T(R)\rangle and βŸ¨βˆ£βˆ‡T∣2βˆ£Ξ”T(R)⟩\langle|\nabla T|^2\big|\Delta T(R) \rangle. We find exact relations between these averages, and with the help of the fusion rules we propose a general representation for these objects in terms of the probability density function P(Ξ”T,R)P(\Delta T,R) of Ξ”T(R)\Delta T(R). These results offer a new way to analyze experimental data that is presented in this paper. The main question that we ask is whether the conditional average βŸ¨βˆ‡2Tβˆ£Ξ”T(R)⟩\langle\nabla^2 T\big| \Delta T(R)\rangle is linear in Ξ”T\Delta T. We show that there exists a dimensionless parameter which governs the deviation from linearity. The data analysis indicates that this parameter is very small for passive scalar advection, and is generally a decreasing function of the Rayleigh number for the convection data.Comment: Phys. Rev. E, Submitted. REVTeX, 10 pages, 5 figs. (not included) PS Source of the paper with figure available at http://lvov.weizmann.ac.il/onlinelist.html#unpub

    Technical Report: Cooperative Multi-Target Localization With Noisy Sensors

    Full text link
    This technical report is an extended version of the paper 'Cooperative Multi-Target Localization With Noisy Sensors' accepted to the 2013 IEEE International Conference on Robotics and Automation (ICRA). This paper addresses the task of searching for an unknown number of static targets within a known obstacle map using a team of mobile robots equipped with noisy, limited field-of-view sensors. Such sensors may fail to detect a subset of the visible targets or return false positive detections. These measurement sets are used to localize the targets using the Probability Hypothesis Density, or PHD, filter. Robots communicate with each other on a local peer-to-peer basis and with a server or the cloud via access points, exchanging measurements and poses to update their belief about the targets and plan future actions. The server provides a mechanism to collect and synthesize information from all robots and to share the global, albeit time-delayed, belief state to robots near access points. We design a decentralized control scheme that exploits this communication architecture and the PHD representation of the belief state. Specifically, robots move to maximize mutual information between the target set and measurements, both self-collected and those available by accessing the server, balancing local exploration with sharing knowledge across the team. Furthermore, robots coordinate their actions with other robots exploring the same local region of the environment.Comment: Extended version of paper accepted to 2013 IEEE International Conference on Robotics and Automation (ICRA
    • …
    corecore