429 research outputs found

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    Conditional Gradient Methods

    Full text link
    The purpose of this survey is to serve both as a gentle introduction and a coherent overview of state-of-the-art Frank--Wolfe algorithms, also called conditional gradient algorithms, for function minimization. These algorithms are especially useful in convex optimization when linear optimization is cheaper than projections. The selection of the material has been guided by the principle of highlighting crucial ideas as well as presenting new approaches that we believe might become important in the future, with ample citations even of old works imperative in the development of newer methods. Yet, our selection is sometimes biased, and need not reflect consensus of the research community, and we have certainly missed recent important contributions. After all the research area of Frank--Wolfe is very active, making it a moving target. We apologize sincerely in advance for any such distortions and we fully acknowledge: We stand on the shoulder of giants.Comment: 238 pages with many figures. The FrankWolfe.jl Julia package (https://github.com/ZIB-IOL/FrankWolfe.jl) providces state-of-the-art implementations of many Frank--Wolfe method

    Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields

    Full text link
    We apply stochastic average gradient (SAG) algorithms for training conditional random fields (CRFs). We describe a practical implementation that uses structure in the CRF gradient to reduce the memory requirement of this linearly-convergent stochastic gradient method, propose a non-uniform sampling scheme that substantially improves practical performance, and analyze the rate of convergence of the SAGA variant under non-uniform sampling. Our experimental results reveal that our method often significantly outperforms existing methods in terms of the training objective, and performs as well or better than optimally-tuned stochastic gradient methods in terms of test error.Comment: AI/Stats 2015, 24 page

    On the convergence of mirror descent beyond stochastic convex programming

    Get PDF
    In this paper, we examine the convergence of mirror descent in a class of stochastic optimization problems that are not necessarily convex (or even quasi-convex), and which we call variationally coherent. Since the standard technique of "ergodic averaging" offers no tangible benefits beyond convex programming, we focus directly on the algorithm's last generated sample (its "last iterate"), and we show that it converges with probabiility 11 if the underlying problem is coherent. We further consider a localized version of variational coherence which ensures local convergence of stochastic mirror descent (SMD) with high probability. These results contribute to the landscape of non-convex stochastic optimization by showing that (quasi-)convexity is not essential for convergence to a global minimum: rather, variational coherence, a much weaker requirement, suffices. Finally, building on the above, we reveal an interesting insight regarding the convergence speed of SMD: in problems with sharp minima (such as generic linear programs or concave minimization problems), SMD reaches a minimum point in a finite number of steps (a.s.), even in the presence of persistent gradient noise. This result is to be contrasted with existing black-box convergence rate estimates that are only asymptotic.Comment: 30 pages, 5 figure
    corecore