238,473 research outputs found

    Two-qubit mixed states and teleportation fidelity: Purity, concurrence, and beyond

    Full text link
    To explore the properties of a two-qubit mixed state, we consider quantum teleportation. The fidelity of a teleported state depends on the resource state purity and entanglement, as characterized by concurrence. Concurrence and purity are functions of state parameters. However, it turns out that a state with larger purity and concurrence, may have comparatively smaller fidelity. By computing teleportation fidelity, concurrence and purity for two-qubit X-states, we show it explicitly. We further show that fidelity changes monotonically with respect to functions of parameters - other than concurrence and purity. A state with smaller concurrence and purity, but larger value of one of these functions has larger fidelity. These functions, thus characterize nonlocal classical and/or quantum properties of the state that are not captured by purity and concurrence alone. In particular, concurrence is not enough to characterize the entanglement properties of a two-qubit mixed state

    Mixed State Entanglement of Assistance and the Generalized Concurrence

    Full text link
    We consider the maximum bipartite entanglement that can be distilled from a single copy of a multipartite mixed entangled state, where we focus mostly on dĂ—dĂ—nd\times d\times n-dimensional tripartite mixed states. We show that this {\em assisted entanglement}, when measured in terms of the generalized concurrence (named G-concurrence) is (tightly) bounded by an entanglement monotone, which we call the G-concurrence of assistance. The G-concurrence is one of the possible generalizations of the concurrence to higher dimensions, and for pure bipartite states it measures the {\em geometric mean} of the Schmidt numbers. For a large (non-trivial) class of dĂ—dd\times d-dimensional mixed states, we are able to generalize Wootters formula for the concurrence into lower and upper bounds on the G-concurrence. Moreover, we have found an explicit formula for the G-concurrence of assistance that generalizes the expression for the concurrence of assistance for a large class of dĂ—dĂ—nd\times d\times n dimensional tripartite pure states.Comment: 7 page

    Family of Concurrence Monotones and its Applications

    Full text link
    We extend the definition of concurrence into a family of entanglement monotones, which we call concurrence monotones. We discuss their properties and advantages as computational manageable measures of entanglement, and show that for pure bipartite states all measures of entanglement can be written as functions of the concurrence monotones. We then show that the concurrence monotones provide bounds on quantum information tasks. As an example, we discuss their applications to remote entanglement distributions (RED) such as entanglement swapping and remote preparation of bipartite entangled states (RPBES). We prove a powerful theorem which states what kind of (possibly mixed) bipartite states or distributions of bipartite states can not be remotely prepared. The theorem establishes an upper bound on the amount of GG-concurrence (one member in the concurrence family) that can be created between two single-qudit nodes of quantum networks by means of tripartite RED. For pure bipartite states the bound on the GG-concurrence can always be saturated by RPBES.Comment: 8 page

    Relation between two measures of entanglement in spin-1/2 and spinless fermion quantum chain systems

    Full text link
    The concepts of concurrence and mode concurrence are the measures of entanglement for spin-1/2 and spinless fermion systems respectively. Based on the Jordan-Wigner transformation, any spin-1/2 system is always associated with a fermion system (called counterpart system). The comparison of concurrence and mode concurrence can be made with the aid of the Marshall's sign rule for the ground states of spin-1/2 XXZXXZ and spinless fermion chain systems. We observe that there exists an inequality between concurrence and mode concurrence for the ground states of the two corresponding systems. The spin-1/2 XY chain system and its spinless fermion counterpart as a realistic example is discussed to demonstrate the analytical results.Comment: 7 pages, no figures, publication version, to appear in PR

    Concurrence for multipartite states

    Get PDF
    We construct a generalized concurrence for general multipartite states based on local W-class and GHZ-class operators. We explicitly construct the corresponding concurrence for three-partite states. The construction of the concurrence is interesting since it is based on local operators.Comment: 5 page
    • …
    corecore