9,576 research outputs found

    Which groups are amenable to proving exponent two for matrix multiplication?

    Get PDF
    The Cohn-Umans group-theoretic approach to matrix multiplication suggests embedding matrix multiplication into group algebra multiplication, and bounding ω\omega in terms of the representation theory of the host group. This framework is general enough to capture the best known upper bounds on ω\omega and is conjectured to be powerful enough to prove ω=2\omega = 2, although finding a suitable group and constructing such an embedding has remained elusive. Recently it was shown, by a generalization of the proof of the Cap Set Conjecture, that abelian groups of bounded exponent cannot prove ω=2\omega = 2 in this framework, which ruled out a family of potential constructions in the literature. In this paper we study nonabelian groups as potential hosts for an embedding. We prove two main results: (1) We show that a large class of nonabelian groups---nilpotent groups of bounded exponent satisfying a mild additional condition---cannot prove ω=2\omega = 2 in this framework. We do this by showing that the shrinkage rate of powers of the augmentation ideal is similar to the shrinkage rate of the number of functions over (Z/pZ)n(\mathbb{Z}/p\mathbb{Z})^n that are degree dd polynomials; our proof technique can be seen as a generalization of the polynomial method used to resolve the Cap Set Conjecture. (2) We show that symmetric groups SnS_n cannot prove nontrivial bounds on ω\omega when the embedding is via three Young subgroups---subgroups of the form Sk1×Sk2×⋯×SkℓS_{k_1} \times S_{k_2} \times \dotsb \times S_{k_\ell}---which is a natural strategy that includes all known constructions in SnS_n. By developing techniques for negative results in this paper, we hope to catalyze a fruitful interplay between the search for constructions proving bounds on ω\omega and methods for ruling them out.Comment: 23 pages, 1 figur

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    An Abstract Approach to Stratification in Linear Logic

    Full text link
    We study the notion of stratification, as used in subsystems of linear logic with low complexity bounds on the cut-elimination procedure (the so-called light logics), from an abstract point of view, introducing a logical system in which stratification is handled by a separate modality. This modality, which is a generalization of the paragraph modality of Girard's light linear logic, arises from a general categorical construction applicable to all models of linear logic. We thus learn that stratification may be formulated independently of exponential modalities; when it is forced to be connected to exponential modalities, it yields interesting complexity properties. In particular, from our analysis stem three alternative reformulations of Baillot and Mazza's linear logic by levels: one geometric, one interactive, and one semantic

    Adaptive Low-Rank Methods for Problems on Sobolev Spaces with Error Control in L2L_2

    Full text link
    Low-rank tensor methods for the approximate solution of second-order elliptic partial differential equations in high dimensions have recently attracted significant attention. A critical issue is to rigorously bound the error of such approximations, not with respect to a fixed finite dimensional discrete background problem, but with respect to the exact solution of the continuous problem. While the energy norm offers a natural error measure corresponding to the underlying operator considered as an isomorphism from the energy space onto its dual, this norm requires a careful treatment in its interplay with the tensor structure of the problem. In this paper we build on our previous work on energy norm-convergent subspace-based tensor schemes contriving, however, a modified formulation which now enforces convergence only in L2L_2. In order to still be able to exploit the mapping properties of elliptic operators, a crucial ingredient of our approach is the development and analysis of a suitable asymmetric preconditioning scheme. We provide estimates for the computational complexity of the resulting method in terms of the solution error and study the practical performance of the scheme in numerical experiments. In both regards, we find that controlling solution errors in this weaker norm leads to substantial simplifications and to a reduction of the actual numerical work required for a certain error tolerance.Comment: 26 pages, 7 figure

    Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials

    Full text link
    In this paper we show a new way of constructing deterministic polynomial-time approximation algorithms for computing complex-valued evaluations of a large class of graph polynomials on bounded degree graphs. In particular, our approach works for the Tutte polynomial and independence polynomial, as well as partition functions of complex-valued spin and edge-coloring models. More specifically, we define a large class of graph polynomials C\mathcal C and show that if p∈Cp\in \cal C and there is a disk DD centered at zero in the complex plane such that p(G)p(G) does not vanish on DD for all bounded degree graphs GG, then for each zz in the interior of DD there exists a deterministic polynomial-time approximation algorithm for evaluating p(G)p(G) at zz. This gives an explicit connection between absence of zeros of graph polynomials and the existence of efficient approximation algorithms, allowing us to show new relationships between well-known conjectures. Our work builds on a recent line of work initiated by. Barvinok, which provides a new algorithmic approach besides the existing Markov chain Monte Carlo method and the correlation decay method for these types of problems.Comment: 27 pages; some changes have been made based on referee comments. In particular a tiny error in Proposition 4.4 has been fixed. The introduction and concluding remarks have also been rewritten to incorporate the most recent developments. Accepted for publication in SIAM Journal on Computatio

    Sequentiality vs. Concurrency in Games and Logic

    Full text link
    Connections between the sequentiality/concurrency distinction and the semantics of proofs are investigated, with particular reference to games and Linear Logic.Comment: 35 pages, appeared in Mathematical Structures in Computer Scienc
    • …
    corecore