1,065 research outputs found

    Automating Model Comparison in Factor Graphs

    Full text link
    Bayesian state and parameter estimation have been automated effectively in the literature, however, this has not yet been the case for model comparison, which therefore still requires error-prone and time-consuming manual derivations. As a result, model comparison is often overlooked and ignored, despite its importance. This paper efficiently automates Bayesian model averaging, selection, and combination by message passing on a Forney-style factor graph with a custom mixture node. Parameter and state inference, and model comparison can then be executed simultaneously using message passing with scale factors. This approach shortens the model design cycle and allows for the straightforward extension to hierarchical and temporal model priors to accommodate for modeling complicated time-varying processes

    Bayes-Optimal Joint Channel-and-Data Estimation for Massive MIMO with Low-Precision ADCs

    Get PDF
    This paper considers a multiple-input multiple-output (MIMO) receiver with very low-precision analog-to-digital convertors (ADCs) with the goal of developing massive MIMO antenna systems that require minimal cost and power. Previous studies demonstrated that the training duration should be {\em relatively long} to obtain acceptable channel state information. To address this requirement, we adopt a joint channel-and-data (JCD) estimation method based on Bayes-optimal inference. This method yields minimal mean square errors with respect to the channels and payload data. We develop a Bayes-optimal JCD estimator using a recent technique based on approximate message passing. We then present an analytical framework to study the theoretical performance of the estimator in the large-system limit. Simulation results confirm our analytical results, which allow the efficient evaluation of the performance of quantized massive MIMO systems and provide insights into effective system design.Comment: accepted in IEEE Transactions on Signal Processin

    Matrix Factorization Based Blind Bayesian Receiver for Grant-Free Random Access in mmWave MIMO mMTC

    Full text link
    Grant-free random access is promising for massive connectivity with sporadic transmissions in massive machine type communications (mMTC), where the hand-shaking between the access point (AP) and users is skipped, leading to high access efficiency. In grant-free random access, the AP needs to identify the active users and perform channel estimation and signal detection. Conventionally, pilot signals are required for the AP to achieve user activity detection and channel estimation before active user signal detection, which may still result in substantial overhead and latency. In this paper, to further reduce the overhead and latency, we explore the problem of grant-free random access without the use of pilot signals in a millimeter wave (mmWave) multiple input and multiple output (MIMO) system, where the AP performs blind joint user activity detection, channel estimation and signal detection (UACESD). We show that the blind joint UACESD can be formulated as a constrained composite matrix factorization problem, which can be solved by exploiting the structures of the channel matrix and signal matrix. Leveraging our recently developed unitary approximate message passing based matrix factorization (UAMP-MF) algorithm, we design a message passing based Bayesian algorithm to solve the blind joint UACESD problem. Extensive simulation results demonstrate the effectiveness of the blind grant-free random access scheme
    corecore