11,783 research outputs found

    Conceptualization of smart solutions in oil and gas industry

    Get PDF
    Technological solutions called “smart wells” and “smart fields” have been applied in petroleum industry for nearly two decades. They aim to improve the knowledge of petroleum production processes, and thereby improve the efficiency of operations. Researchers and companies in pursuit of their goals tend to use one-sided implications and numerous synonyms when describing the substance of the term, which leads to an occasional confusion. In order to study the concept of smart field from a general perspective, a literature review has been conducted, and main characteristic attributes of such solutions have been revealed. Selected marketed products offered by engineering companies have been analyzed as examples of the technology implementations. A definition has been proposed along with its practical implications for the companies management. Additionally, an attempt has been made to place these solutions in a broad scientific context of intelligence and sustainability in contemporary business processes.publishedVersio

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    How replacing fossil fuels with electrofuels could influence the demand for renewable energy and land area

    Get PDF
    During recent years, electrofuels (fuels from electricity, water, and carbon) have gained increased interest as substitute for fossil fuels in all energy and chemical sectors. The feasibility of electrofuels has been assessed from a range of aspects but no study has assessed the land area needed if scaling up the production based on renewables. The amount of land on Earth is limited and the competition for land, in a long-term perspective, imposes a risk of, e.g., increased food prices and biodiversity losses. The aim of this paper is to assess how much land area it would require if all fossil fuels were substituted by electrofuels (‘All electrofuel’-scenario) and compare this with the area needed if all fossil fuels were substituted by bioenergy (‘All biomass’-scenario) or by electricity (‘All electric’-scenario). Each scenario represents extreme cases towards fully renewable energy systems to outline the theoretical area needed. Main conclusions are (1) the electricity demand, if substituting all fossil fuels with electrofuels, is huge (1540 EJ) but technically obtainable, demanding 1.1% of the Earth\u27s surface, for solar panels, in the most optimistic case, and (2) the sustainable technical potential for biomass cannot alone substitute all fossil fuels, unless radical energy demand reductions

    International Energy Technology Transfersfor Climate Change Mitigation - What, who, how, why, when, where, how much … and the Implications for International Institutional Architecture

    Get PDF
    The goal of the paper is to expand and refine the international technology transfer negotiating and analytic agendas and to reframe the issues. The paper presents concepts, indicators, illustrations and data that identify and measure international transfers of energy technologies that can be used to mitigate climate change. Among the questions on that agenda are how much technology transfer there has been to date, and how much will be needed in the future, especially to assist non-Annex I developing countries in their efforts to mitigate climate change. Before the how much questions can be answered, however, there are several prior questions, and hence the many other elements of the subtitle of the paper: what, who, how, why, when, where. These aspects of international technology transfer vary significantly among three existing institutional settings and among the associated analytic paradigms: North-South Official Development Assistance, Global Private International Investment and Trade, and International Public-Private Cooperation Agreements. The principal sections of the paper focus on features of international technology transfers in these institutional settings and on illustrations drawn from the biodiesel industry, especially the use of jatropha tree as the source of the feedstock. The conclusions are summarized as follows: (i) Technologies include intangible know-how and services, as well as tangible goods in the form of production process equipment and finished products. (ii) International transfers of some types of technology are much easier to measure than others. (iii) International technology transfers are highly industry-specific. (iv) Even for individual industries, it is necessary to use multiple indicators of technology transfers. (v) Patterns in the types of technology and methods of transfer vary across the three institutional settings examined in the paper. (vi) All three of the institutional arrangements are probably under-performing and inadequa

    Renewable energy in eco-industrial parks and urban-industrial symbiosis: A literature review and a conceptual synthesis

    Get PDF
    Replacing fossil fuels with renewable energy sources is considered as an effective means to reduce carbon emissions at the industrial level and it is often supported by local authorities. However, individual firms still encounter technical and financial barriers that hinder the installation of renewables. The eco-industrial park approach aims to create synergies among firms thereby enabling them to share and efficiently use natural and economic resources. It also provides a suitable model to encourage the use of renewable energy sources in the industry sector. Synergies among eco-industrial parks and the adjacent urban areas can lead to the development of optimized energy production plants, so that the excess energy is available to cover some of the energy demands of nearby towns. This study thus provides an overview of the scientific literature on energy synergies within eco-industrial parks, which facilitate the uptake of renewable energy sources at the industrial level, potentially creating urban-industrial energy symbiosis. The literature analysis was conducted by arranging the energy-related content into thematic categories, aimed at exploring energy symbiosis options within eco-industrial parks. It focuses on the urban-industrial energy symbiosis solutions, in terms of design and optimization models, technologies used and organizational strategies. The study highlights four main pathways to implement energy synergies, and demonstrates viable solutions to improve renewable energy sources uptake at the industrial level. A number of research gaps are also identified, revealing that the energy symbiosis networks between industrial and urban areas integrating renewable energy systems, are under-investigated
    corecore