111,408 research outputs found

    A New Combination Method Based on Adaptive Genetic Algorithm for Medical Image Retrieval

    Get PDF
    Medical image retrieval could be based on the text describing the image as the caption or the title. The use of text terms to retrieve images have several disadvantages such as term-disambiguation. Recent studies prove that representing text into semantic units (concepts) can improve the semantic representation of textual information. However, the use of conceptual representation has other problems as the miss or erroneous semantic relation between two concepts. Other studies show that combining textual and conceptual text representations leads to better accuracy. Popularly, a score for textual representation and a score for conceptual representation are computed and then a combination function is used to have one score. Although the existing of many combination methods of two scores, we propose in this paper a new combination method based on adaptive version of the genetic algorithm. Experiments are carried out on Medical Information Retrieval Task of the ImageCLEF 2009 and 2010. The results confirm that the combination of both textual and conceptual scores allows best accuracy. In addition, our approach outperforms the other combination methods

    Multimedia Retrieval: Survey Of Methods And Approaches

    Get PDF
    As we know there are numbers of applications present where multimedia retrieval is used and also numbers of sources are present. So accuracy is the major issue in retrieval process. There are number of techniques and datasets available to retrieve information. Some techniques uses only text-based image retrieval (TBIR), some uses content-based image retrieval (CBIR) while some are using combination of both. In this paper we are focusing on both TBIR and CBIR results and then fusing these two results. For fusing we are using late fusion. TBIR captures conceptual meaning while CBIR used to avoid false results. So final results are more accurate. In this paper our main goal is to take review of different methods and approaches used for Multimedia Retrieval

    Visual Eureka Navigating Images Through Textual Queries

    Get PDF
    Within the domain of text extraction technologies, progress has been somewhat constrained, notwithstanding notable instances such as Google Lens, which proficiently extracts text from images. A conspicuous gap persists, however, in the availability of software tailored for the reciprocal task of searching images based on their textual content. Our pioneering conceptual framework introduces a transformative paradigm shift—a software solution engineered for image retrieval through text search. The crux of our technical innovation lies in the systematic incorporation of metadata as a repository for textual data linked to images. Through advanced text extraction algorithms, including robust optical character recognition methods, we decipher and store relevant textual information in this metadata. This meticulous indexing facilitates a highly efficient search mechanism, allowing users to query images based on specific text-related parameters. The user interface seamlessly integrates these functionalities, providing an intuitive platform for users to input text queries and retrieve images with unprecedented precision. Scalability and performance optimization measures ensure the system's adaptability to growing datasets, promising not only a redefined utility of image search but also a significant advancement in user convenience and operational efficiency within the visual data retrieval landscape

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Multimedia search without visual analysis: the value of linguistic and contextual information

    Get PDF
    This paper addresses the focus of this special issue by analyzing the potential contribution of linguistic content and other non-image aspects to the processing of audiovisual data. It summarizes the various ways in which linguistic content analysis contributes to enhancing the semantic annotation of multimedia content, and, as a consequence, to improving the effectiveness of conceptual media access tools. A number of techniques are presented, including the time-alignment of textual resources, audio and speech processing, content reduction and reasoning tools, and the exploitation of surface features

    Conceptual search – ESI, litigation and the issue of language

    Get PDF
    Across the globe, legal, business and technical practitioners charged with managing information are continually challenged by rapid-fire evolution and growth in the legal and technology fields. In the United States, new compliance requirements, amendments to the Federal Rules of Civil Procedure (FRCP) and corresponding case law, along with technical advances, have made litigation support one of the most exciting professions in the legal arena. In the UK, revisions to the Practice Direction to CPR Rule 31 require parties in civil litigation to consider the impacts associated with electronic documents. One emerging technology trends—both aiding and complicating the management of electronically stored information (ESI) in litigation in the US, EU and UK alike—is the notion of “conceptual search.” This paper focuses on the evolution of conceptual search technology, and predictions of where this science will take legal professionals and technical information managers in coming years and a look at the advantages conceptual search can provide in dealing with the issue of language. This paper will focus primarily and the latent semantic analysis approach to conceptual search and why this approach is advantageous when searching ESI regardless of the language used in the documents, even to the extent of allowing for cross language searching and accurate searching of documents that contain co-mingle foreign terms with the native language

    Automated speech and audio analysis for semantic access to multimedia

    Get PDF
    The deployment and integration of audio processing tools can enhance the semantic annotation of multimedia content, and as a consequence, improve the effectiveness of conceptual access tools. This paper overviews the various ways in which automatic speech and audio analysis can contribute to increased granularity of automatically extracted metadata. A number of techniques will be presented, including the alignment of speech and text resources, large vocabulary speech recognition, key word spotting and speaker classification. The applicability of techniques will be discussed from a media crossing perspective. The added value of the techniques and their potential contribution to the content value chain will be illustrated by the description of two (complementary) demonstrators for browsing broadcast news archives

    Conceptual biology, hypothesis discovery, and text mining: Swanson's legacy

    Get PDF
    Innovative biomedical librarians and information specialists who want to expand their roles as expert searchers need to know about profound changes in biology and parallel trends in text mining. In recent years, conceptual biology has emerged as a complement to empirical biology. This is partly in response to the availability of massive digital resources such as the network of databases for molecular biologists at the National Center for Biotechnology Information. Developments in text mining and hypothesis discovery systems based on the early work of Swanson, a mathematician and information scientist, are coincident with the emergence of conceptual biology. Very little has been written to introduce biomedical digital librarians to these new trends. In this paper, background for data and text mining, as well as for knowledge discovery in databases (KDD) and in text (KDT) is presented, then a brief review of Swanson's ideas, followed by a discussion of recent approaches to hypothesis discovery and testing. 'Testing' in the context of text mining involves partially automated methods for finding evidence in the literature to support hypothetical relationships. Concluding remarks follow regarding (a) the limits of current strategies for evaluation of hypothesis discovery systems and (b) the role of literature-based discovery in concert with empirical research. Report of an informatics-driven literature review for biomarkers of systemic lupus erythematosus is mentioned. Swanson's vision of the hidden value in the literature of science and, by extension, in biomedical digital databases, is still remarkably generative for information scientists, biologists, and physicians. © 2006Bekhuis; licensee BioMed Central Ltd

    A Relation Extraction Approach for Clinical Decision Support

    Full text link
    In this paper, we investigate how semantic relations between concepts extracted from medical documents can be employed to improve the retrieval of medical literature. Semantic relations explicitly represent relatedness between concepts and carry high informative power that can be leveraged to improve the effectiveness of retrieval functionalities of clinical decision support systems. We present preliminary results and show how relations are able to provide a sizable increase of the precision for several topics, albeit having no impact on others. We then discuss some future directions to minimize the impact of negative results while maximizing the impact of good results.Comment: 4 pages, 1 figure, DTMBio-KMH 2018, in conjunction with ACM 27th Conference on Information and Knowledge Management (CIKM), October 22-26 2018, Lingotto, Turin, Ital
    • 

    corecore