237 research outputs found

    A Survey on Differential Privacy with Machine Learning and Future Outlook

    Full text link
    Nowadays, machine learning models and applications have become increasingly pervasive. With this rapid increase in the development and employment of machine learning models, a concern regarding privacy has risen. Thus, there is a legitimate need to protect the data from leaking and from any attacks. One of the strongest and most prevalent privacy models that can be used to protect machine learning models from any attacks and vulnerabilities is differential privacy (DP). DP is strict and rigid definition of privacy, where it can guarantee that an adversary is not capable to reliably predict if a specific participant is included in the dataset or not. It works by injecting a noise to the data whether to the inputs, the outputs, the ground truth labels, the objective functions, or even to the gradients to alleviate the privacy issue and protect the data. To this end, this survey paper presents different differentially private machine learning algorithms categorized into two main categories (traditional machine learning models vs. deep learning models). Moreover, future research directions for differential privacy with machine learning algorithms are outlined.Comment: 12 pages, 3 figure

    Privacy Amplification by Iteration

    Full text link
    Many commonly used learning algorithms work by iteratively updating an intermediate solution using one or a few data points in each iteration. Analysis of differential privacy for such algorithms often involves ensuring privacy of each step and then reasoning about the cumulative privacy cost of the algorithm. This is enabled by composition theorems for differential privacy that allow releasing of all the intermediate results. In this work, we demonstrate that for contractive iterations, not releasing the intermediate results strongly amplifies the privacy guarantees. We describe several applications of this new analysis technique to solving convex optimization problems via noisy stochastic gradient descent. For example, we demonstrate that a relatively small number of non-private data points from the same distribution can be used to close the gap between private and non-private convex optimization. In addition, we demonstrate that we can achieve guarantees similar to those obtainable using the privacy-amplification-by-sampling technique in several natural settings where that technique cannot be applied.Comment: Extended abstract appears in Foundations of Computer Science (FOCS) 201
    • …
    corecore